Abstract:
A rotor assembly is provided in which the rotor assembly includes a first core portion, wherein the first core portion has at least one first core protrusion, and a second core portion, wherein the second core portion has at least one second core protrusion. The first core portion and the second core portion are configured to be matingly coupled to each other so as to form an assembled rotor assembly. In addition, the rotor assembly includes a number of magnetizable members wherein respective ones of the magnetizable members are coupled to each of the first core protrusions and coupled to each of the second core protrusions. The magnetizable members are adapted to be coupled to a magnetizing fixture prior to mating the first and second core portions so as to magnetize the magnetizable members.
Abstract:
A method of making a permanent magnet body is provided. The method includes providing a first precursor body comprising a plurality of blocks and magnetizing the first precursor body to form a first permanent magnet body. A recoil magnetization pulse may be applied to the permanent magnet body after the magnetization. The precursor body may be heated during magnetization. A power supply containing a battery may be used to energize a pulsed magnet used to magnetize the precursor body.
Abstract:
High-permeability, low-core-loss soft magnetic composite materials, compositions containing the same, and methods for making the same are described. These magnetic materials are made by forming fiber or flake shaped particles from a ferromagnetic material, annealing the particles, and then coating an insulating material on the particles. These particles can then be compacted to form an article that has high permeability, high saturation, low core loss, and is a suitable replacement for laminations in various applications, such as motors.
Abstract:
An X-ray tube comprises a cathode, an anode target assembly and an axial flux motor having a rotor and a stator. The stator is positioned along a transverse axis parallel to the rotor axis. The rotor and the stator are configured to be coupled to the anode target assembly. A cathode generates an electron beam for impingement upon the anode target assembly and a vacuum housing surrounds the anode target assembly, the cathode and the rotor to enable the electron beam impingement.
Abstract:
A machine monitoring method includes obtaining signals indicative of machine conditions, machine rotational speed, direction, and load conditions over a segment of time, transforming the obtained signal indicative of machine conditions into a frequency spectrum, identifying low level features of the frequency spectrum, and processing the low level features to obtain an indicator value representative of the machine conditions.
Abstract:
A power generator that operates at a reduced keybar voltages and currents, flange currents, and keybar voltage differentials includes a keybar shield that reduces the amount of magnetic flux coupling into a keybar of multiple keybars during operation of the generator. By reducing the amount of coupled flux, the keybar shield reduces a keybar voltage and a keybar current in a keybar, reduces keybar current flowing into a flange, and reduces a voltage differential between voltages induced by the flux in the multiple keybars.
Abstract:
A sensing coil affixed to the outside of an induction motor housing uses flux signals from the motor to measure motor speed. In particular, components of the rotor current are measured and compared to analysis from stator fundamentals and sidebands to determine the true rotor frequency which can then be used to determine the motor speed. A shield and/or a compensating coil can optionally be used to filter out extraneous signal noise.
Abstract:
A bearing assembly includes: an axial rotatable structure including a cylindrical rotor assembly (including a motor rotor and a plurality of magnetic bearing rotors); a cylindrical stationary shaft; rotating element bearings mechanically coupling the rotatable structure and the stationary shaft; and a cylindrical stator assembly including a motor stator and a plurality of magnetic bearing stators. The magnetic bearing stators and the magnetic bearing rotors forming magnetic bearings magnetically coupling the rotor and stator assemblies. Command feedforward of electrical current can be provided to at least some of the bearings to achieve appropriate radial forces for respective operating trajectories.
Abstract:
A multipole brushless DC motor stator is formed with a pair of complementary opposable claw pole stator structures in which each of the stator structures comprises a stator base formed of a plurality of stacked sheet metal laminations. A plurality of stator pole members extend from the stator base and are formed by compression molding of a ferromagnetic material. In one form, the ferromagnetic material is molded in situ on the stator base by positioning the stator base in a compression mold having the slots in which a powdered or flaked ferromagnetic material can be positioned and compressed by a die. In another form, the ferromagnetic pole members may be independently compression molded of powdered or flaked ferromagnetic material and then adhesively bonded to the stacked laminations forming the stator base. In either method, the stacked laminations are formed with a plurality of receptacles for receiving one end of each of the stator poles and holding the stator poles to the stator base.
Abstract:
Rotor temperature in induction motors is estimated without the need for any direct temperature sensors, by using only computer calculations based on data readily available in the motor control center. Thus for any given motor, it is generally possible to predetermine a relationship between rotor temperature and rotor resistance, so that by determining rotor resistance, rotor temperature can be calculated. Rotor resistance, in turn, can be calculated from measured information relating motor slip and motor torque. Any of several methods can be employed for determining torque and slip. Temperature estimation can be obtained by use of equivalent circuit methods, and additional relationships can be obtained from a simplified equivalent circuit.