摘要:
The present invention provides a method for manufacturing a semiconductor device having multiple gate dielectric thickness layers. The method, in one embodiment, includes forming a first layer of gate dielectric material over a semiconductor substrate in a first active region and a second active region of a semiconductor device, and patterning a masking layer to expose the first layer of gate dielectric material located in the first active region. The method further includes subjecting exposed portions of the first layer of gate dielectric material to a nitrogen containing plasma, thereby forming a second layer of gate dielectric material over the first layer of gate dielectric material located in the first active region, incorporating oxygen into the second layer of gate dielectric material located in the first active region, and removing the, patterned masking layer, thereby resulting in a first greater thickness gate dielectric in the first active region and a second lesser thickness gate dielectric in the second active region.
摘要:
The present invention provides, in one aspect, provides a method of manufacturing a microelectronics device 100 that includes depositing a first gate dielectric layer 160 over a substrate 115, subjecting the first gate dielectric layer 160 to a first nitridation process, forming a second gate dielectric layer 165 over the substrate 115 and having a thickness less than a thickness of the first gate dielectric layer 160, and subjecting the first and second gate dielectric layers 160, 165 to a second nitridation process, wherein the first and second nitridation processes are different. The present invention also provides a microelectronics device 100 fabricated in accordance with the method.
摘要:
A process for forming a polysilicon line having linewidths below 0.23 &mgr;m. The layer of polysilicon (20) is deposited over a semiconductor body (10). A layer of bottom anti-reflective coating (BARC) (30) is deposited over the polysilicon layer (20). A resist pattern (40) is formed over the BARC layer (30) using conventional lithography (e.g., deep UV lithography). The BARC layer (30) is etched with an etch chemistry of HBr/O2 using the resist pattern (40) until the endpoint is detected. The BARC layer (30) and resist pattern (40) are then overetched using the same etch chemistry having a selectivity of approximately one-to-one between the BARC and resist. The overetch is a timed etch to control the linewidth reduction in the resist/BARC pattern. The minimum dimension of the pattern (50) is reduced to below the practical resolution limit of the lithography tool. Finally, the polysilicon layer (20) is etched using the reduced width pattern (50).
摘要:
The present invention provides a method for manufacturing a semiconductor device having multiple gate dielectric thickness layers. The method, in one embodiment, includes forming a masking layer over a semiconductor substrate in a first active region and a second active region of a semiconductor device, patterning the masking layer to expose the semiconductor substrate in the first active region, and subjecting exposed portions of the semiconductor substrate to a nitrogen containing plasma, thereby forming a first layer of gate dielectric material over the semiconductor substrate in the first active region. The method, in that embodiment, may further include incorporating oxygen into the first layer of gate dielectric material located in the first active region, and then removing the patterned masking layer, and forming a second layer of gate dielectric material over the first layer of gate dielectric material in the first active region and over the semiconductor substrate in the second active region, thereby resulting in a first greater thickness gate dielectric in the first active region and a second lesser thickness gate dielectric in the second active region.
摘要:
The present invention provides a method for manufacturing a semiconductor device. The method, in one embodiment, includes forming a silicon oxide masking layer over a substrate in a first active region and a second active region of a semiconductor device, patterning the silicon oxide masking layer to expose the substrate in the first active region. The method further includes forming a layer of dielectric material over the substrate in the first active region, the patterned silicon oxide masking layer protecting the substrate from the layer of dielectric material in the second active region.
摘要:
The present invention provides a method for forming a semiconductor device, as well as a semiconductor device. The method for manufacturing a semiconductor device, among others, includes providing a gate structure over a substrate, the gate structure including a gate electrode located over a nitrided gate dielectric, and forming a nitrided region over a sidewall of the nitrided gate dielectric.
摘要:
The present invention provides a method for manufacturing a gate dielectric, a method for manufacturing a semiconductor device, and a method for manufacturing an integrated circuit. The method for manufacturing the gate dielectric, without limitation, may include forming a nitrided dielectric layer (520) over a substrate (310), the nitrided dielectric layer (520) having a non-uniformity of nitrogen in a bulk thereof, and removing at least a portion of the nitrided dielectric layer (520) using a high temperature chemical treatment, the removing reducing the non-uniformity.
摘要:
The present invention provides a method for manufacturing a gate dielectric (710) that includes providing a nitrided dielectric layer (220) over a substrate (120). The nitrided dielectric layer (220) has a nonuniform concentration of nitrogen in a bulk thereof. The nitrided dielectric layer (220) is exposed to oxygen radicals (410), resulting in a reduction of the non-uniformity.