Abstract:
A rotor (10) for a generator, especially for a turbogenerator, is assembled from a plurality of separate rotor elements (11, 12) which are arranged one behind the other in the rotor axis (18), wherein the rotor elements (11, 12) abut on connecting faces and are welded to one another, forming circular weld seams (17) which concentrically encompass in each case an annular central gap (37) with a predetermined gap width. In order to achieve a maximum magnetically active volume with mechanical stresses which are as low as possible, on the outer circumference of the gap (37) the gap merges into a widening cavity (38) which is adjacent to the weld seam (17).
Abstract:
A conductor bar for a large, rotating electric machine includes a press-formed conductor loop having a rectangular cross-sectional shape. The conductor loop includes a plurality of identical, helically wound, Roebel transposed, stranded conductors. Each of the stranded conductors includes a cable including a plurality of electrically insulated individual wires, wherein the cross-sectional shape is constant along a length of the conductor bar.
Abstract:
A gas-cooled electric machine includes a generator housing, a rotor shaft, at least one axial fan disposed on the rotor shaft inside the generator housing and having a hub, and a pressure boosting apparatus associated with the axial fan and configured to raise an absolute pressure in a generator interior. The pressure boosting apparatus has at least one flow channel between an interior of the hub and the generator interior and is at least partially delimited by the hub. A flow inlet into the flow channel and a flow outlet out of the flow channel are disposed radially at a distance with respect to each other.
Abstract:
A generator for producing high voltages and having at least one generator winding (12) is connected via a generator circuit (10) to a network (19), which generator circuit has means (15, . . . , 17) for protection against overvoltages. Improved protection against higher voltages is achieved in that the at least one generator winding (12) is subdivided into a number of winding sections (12a-c) whose winding insulation is designed such that the insulation level is graduated, and in that the overvoltage protection means have a number of overvoltage protection elements (15, . . . , 17), which are associated with the respective individual winding sections (12a-c) and whose response levels are matched to the requirements of the associated winding section.
Abstract:
The rotor has a core with an internal space. Permanent magnets are arranged on the core. These permanent magnets are surrounded by an outer cylinder, which is connected flush to closure disks which bear stub shafts. Channels run out from the internal space in the radial direction to the region of the permanent magnets. A resin mass is first introduced into the internal space. The rotor is thereafter heated and run up to centrifuging rotational speed. As a result, the molten resin mass flows through the channels to the region of the permanent magnets and fills up all the cavities present there and also cracks which form in the brittle permanent magnets on running up to speed. The resin mass hardens while the rotor is kept at centrifuging rotational speed. Each surface region of the permanent magnets is thus reliably protected against corrosion.
Abstract:
A conductor bar for a large, rotating electric machine includes a press-formed conductor loop having a rectangular cross-sectional shape. The conductor loop includes a plurality of identical, helically wound, Roebel transposed, stranded conductors. Each of the stranded conductors includes a cable including a plurality of electrically insulated individual wires, wherein the cross-sectional shape is constant along a length of the conductor bar.
Abstract:
A turbogenerator (10) has a rotor (11) having a cylindrical rotor body (13), which at each of the two ends merges into a shaft end (14), and in a middle section has the electromagnetically active region (23) of the rotor (11), in which the rotor (11) is assembled from a plurality of rotor parts which are interconnected and arranged in series on the rotor axis (19). With such a rotor, lower losses and temperatures in the end region of the rotor, and overall a higher limit rating or a broadened output range, become possible as a result of the fact that the rotor body (13) in the active region (23) is formed of an easily magnetizable material, especially a first steel, and in that the end sections of the rotor body (13) which are located outside the active region (23) and the shaft ends (14) are formed of a material with reduced magnetizability or of a non-magnetic material, especially a second steel.
Abstract:
A hydrogen cooled generator having an axis and a plurality of phases comprises a main casing section enclosing a stator with windings; a casing end section; at least one end winding disposed in the casing end section; a toroidal duct formed on at least one of the casing end section and the main casing section having a bottom wall and two side walls, wherein at least one of the bottom wall and the two side walls shares a wall of the casing end section so as to form a common wall; and at least one bushing penetrating the common wall and inclined towards the axis of the generator, the at least one bushing having a first end connected to the at least one end winding and a second end terminating in the toroidal duct.
Abstract:
In a device for disconnecting and/or connecting m phases (u, v, and w) of an alternating voltage providing source (1) from n phases (n1, n2, n3) of a load (3), each of the m phases (u, v, w) of the source (1) independently is connected by a power switch (9) with each of the n phases in a m×n matrix. First measuring devices (4) for monitoring the m phases (u, v, w) of the source (1) as well as 2nd measuring devices (5) for monitoring the n phases (n1, n2, n3) of the load (3) are provided, and a switching unit (6) is provided, which controls the switching state of the switches (9) depending on the state of the m phases (u, v, w) of the source (1) and of the n phases (n1, n2, n3) of the load (3). This construction allows a particularly quick connection and/or disconnection for increased stability.
Abstract:
A static exciter system (20) for the field winding (17) of a generator (16) which is connected to a grid system via a busbar (19) includes a first device (12, 18, 21) for production of a DC voltage, which is connected to the field winding (17) and together with the field winding (17) form an exciter circuit, as well as a second device (23; 29, C1, . . . , C3) for emission of electrical energy, which second device (23; 29, C1, . . . , C3) briefly feeds additional energy into the exciter circuit when required. An exciter system such as this results in the capability to briefly increase the excitation in a simple, functionally reliable and space-saving manner, by inserting a forward-biased diode (22) into the exciter circuit, and by the capability to connect the second device (23) to the diode (22), in the reverse-bias direction, in order to feed the energy into the exciter circuit.