摘要:
SAPO-34 membranes and methods for their preparation and use are described. The SAPO-34 membranes are prepared by contacting at least one surface of a porous membrane support with a synthesis gel comprising a first and a second templating agent. SAPO-34 crystals having a narrow size distribution were applied to the surface of the support prior to synthesis. A layer of SAPO-34 crystals is formed on at least one surface of the support. SAPO-34 membranes of the invention can have improved selectivity for certain gas mixtures, including mixtures of carbon dioxide and methane.
摘要:
The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current passes through a divided electrochemical cell. Adjacent compartments of the cell are divided by an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
摘要:
The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current passes through a divided electrochemical cell. Adjacent compartments of the cell are divided by an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
摘要:
Zeolite membranes that can be used to continuously separate components of mixtures are disclosed. The zeolite membranes are prepared by isomorphous substitution, which allows systematic modification of the zeolite surface and pore structure. Through proper selection of the basic zeolite framework structure and compensating cations, isomorphous substitution permits high separation selectivity without many of the problems associated with zeolite post-synthesis treatments. The inventive method for preparing zeolite membranes is alkali-free and is much simpler than prior methods for making acid hydrogen zeolite membranes, which can be used as catalysts in membrane reactors.
摘要:
A fluid membrane is described, termed the electroconvective liquid crystal membrane (ECLCM), comprised of a sandwich-like configuration in which a fluid layer is contained within a structure. The structure containing the fluid layer separates distinct regions having different concentrations of one or more diffusant species and is capable of being accessed by the diffusant species. The fluid layer is comprised of any fluid in which an electrohydrodynamic (EHD) flow can be induced, including liquid crystals and liquid crystal-like fluids. The ECLCM includes means for applying an electric field to the fluid layer such that an EHD flow is induced within the fluid layer. The EHD flow alters the passage of the diffusant species across the ECLCM. The fluid layer may be modified by the addition of other components which act as carriers to the passage of selected diffusants. These additional components move in the EHD flow and can be chemically bonded to the fluid layer, added as dopants into the fluid layer, or may be separate solid or liquid phases of other materials not soluble in the fluid layer. The membrane of the present invention can function in an electrochemically modulated complexation (EMC) process wherein a complexing agent is added to the fluid layer and electrolyzed to high and low affinity redox states for separation of different molecular species. The present invention includes a method for separating and purifying molecules.
摘要:
The present invention describes a perfluorinated ionomer membrane having a improved transport characteristics. A surfactant species is added to a polymer mixture prior to film casting. The resulting membranes have a measurably altered membrane microstructure and improved transport characteristics over prior art membranes. The present invention describes the method of producing the improved membranes. The membranes of the present invention are useful in a number of separation processes, including the separation of NH.sub.3 from gaseous and liquid mixtures, in the production of NaOH and Cl.sub.2 gas from the electrolytic dissolution of NaCl, in the separation of toxic and radioactive metals from aqueous streams, and in solid polymer electrolyte H.sub.2 /O.sub.2 fuel cells.
摘要:
Magnetically stabilized fluidized bed technology is utilized in conjunction with ion-exchange adsorption/desorption processes in a method and system for isolating proteins from cell lysate. The invention also includes a magnetizable, porous, ion-exchange particle, and a method for producing the same, for use with the stationary magnetically stabilized fluidized bed protein isolation process.
摘要:
SAPO-34 membranes and methods for their preparation and use are described. The SAPO-34 membranes are prepared by contacting at least one surface of a porous membrane support with a synthesis gel. The Si/Al ratio of the synthesis gel can be from 0.3 to 0.15. SAPO-34 crystals are optionally applied to the surface of the support prior to synthesis. A layer of SAPO-34 crystals is formed on at least one surface of the support. SAPO-34 crystals may also form in the pores of the support. SAPO-34 membranes of the invention can have improved selectivity for certain gas mixtures, including mixtures of carbon dioxide and methane.
摘要:
The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current is passed through a divided electrochemical cell. Adjacent compartments of the cell are divided by a separator which comprises an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.
摘要:
A method and device for storing and dispensing a fluid includes providing a vessel configured for selective dispensing of the fluid therefrom. Provided within a vessel is a nanocomposite material comprising an imidazolium surfactant and an integral solvent that is essential to the formation of the nanocomposite material. The fluid is contacted with the nanocomposite material for take-up of the fluid by the polymerized nanocomposite material. The fluid is released from the nanocomposite material and dispensed from the vessel.