摘要:
Disclosed herein are methods and systems of scanning a target for potential threats using the energy spectra of photons scattered from the target to determine the spatial distributions of average atomic number and/or mass in the target. An exemplary method comprises: illuminating each of a plurality of voxels of the target with a photon beam; determining an incident flux upon each voxel; measuring the energy spectrum of photons scattered from the voxel; determining, using the energy spectrum, the average atomic number in the voxel; and determining the mass in the voxel using the incident flux, the average atomic number of the material in the voxel, the energy spectrum, and a scattering kernel corresponding to the voxel. An exemplary system may use threat detection heuristics to determine whether to trigger further action based upon the average atomic number and/or mass of the voxels.
摘要:
Disclosed herein are methods and systems of scanning a target for potential threats using the energy spectra of photons scattered from the target to determine the spatial distributions of average atomic number and/or mass in the target. An exemplary method comprises: illuminating each of a plurality of voxels of the target with a photon beam; determining an incident flux upon each voxel; measuring the energy spectrum of photons scattered from the voxel; determining, using the energy spectrum, the average atomic number in the voxel; and determining the mass in the voxel using the incident flux, the average atomic number of the material in the voxel, the energy spectrum, and a scattering kernel corresponding to the voxel. An exemplary system may use threat detection heuristics to determine whether to trigger further action based upon the average atomic number and/or mass of the voxels.
摘要:
The broadening of the lines in NRF from an isotope that is part of a material may be due to several causes: the temperature of the material, the molecular structure of the material and the crystalline structure of the material. By measuring the broadening caused by the molecular structure and the crystalline structure the material itself can be identified. The exact energy of the lines in NRF may also depend on the nature of the crystalline and molecular structure of the material. By measuring the changes in the energy of the NRF lines caused by the structure of the material the material itself may be identified. These techniques provide a “fingerprint” of the molecule or crystal that is involved. The fingerprint information may be used to determine a potential threat.
摘要:
Disclosed herein are methods and systems of scanning a target for potential threats using the energy spectra of photons scattered from the target to determine the spatial distributions of average atomic number and/or mass in the target. An exemplary method comprises: illuminating each of a plurality of voxels of the target with a photon beam; determining an incident flux upon each voxel; measuring the energy spectrum of photons scattered from the voxel; determining, using the energy spectrum, the average atomic number in the voxel; and determining the mass in the voxel using the incident flux, the average atomic number of the material in the voxel, the energy spectrum, and a scattering kernel corresponding to the voxel. An exemplary system may use threat detection heuristics to determine whether to trigger further action based upon the average atomic number and/or mass of the voxels.
摘要:
A new concept is presented along with different embodiments to produce improved duty cycle of electron beams and multiple beams of different energy from WF, FFAG and other betatron and induction accelerators. These variations are achieved by using the induction core in both directions of induction core swing to accelerate beams in different magnetic guide regions to improve beam repetition rates and duty cycle. The beams may have different energies and intensities. Multiple guide field regions may be used with an induction core while the field is varying in one direction to also produce multiple beams, each differing in energy and intensity. The use of a single core allows improved duty cycle and multiple beams with a substantial increase in performance and reduction of cost in those cases where the induction core, associated power supplies and control are a significant fraction of the cost of such an accelerator.
摘要:
Methods and systems for detecting potential items of interest in target samples, using nuclear resonance fluorescence, utilize incident photon spectra that are narrower than traditional bremsstrahlung spectra but overlap nuclear resonances in elements of interest for purposes of detection, such as but not limited to the detection of threats in luggage or containers being scanned.
摘要:
Methods and apparatus are described wherein a charged beam in an enclosed conducting cavity in an accelerator is monitored for position, current, and energy. One method uses induced electric signals on non-intercepting conducting electrodes. Another method uses an intercepting and moving electrode than can be moved into the beam to different degrees to monitor the beam current and vertical profile at different radial positions. Non-intercepting electrodes are also used as part of a moving diagnostic probe to monitor properties of the beam at different radial positions. Another method uses the current in the leads to a power supply, a portion of this current being equal to the beam current. Another method uses the magnetic and electric fields from the beam that penetrates a non-conducting portion of the conducting cavity. Yet another method uses the radiation emitted during acceleration of the beam by the deflecting magnets that guide the beam.
摘要:
Methods and apparatus are described wherein a charged beam in an enclosed conducting cavity in an accelerator is monitored for position, current, and energy. One method uses induced electric signals on non-intercepting conducting electrodes. Another method uses an intercepting and moving electrode than can be moved into the beam to different degrees to monitor the beam current and vertical profile at different radial positions. Non-intercepting electrodes are also used as part of a moving diagnostic probe to monitor properties of the beam at different radial positions. Another method uses the current in the leads to a power supply, a portion of this current being equal to the beam current. Another method uses the magnetic and electric fields from the beam that penetrates a non-conducting portion of the conducting cavity. Yet another method uses the radiation emitted during acceleration of the beam by the deflecting magnets that guide the beam.
摘要:
A method is described wherein a beam of charged particles is confined to an orbit within a compact region of space as it is accelerated across a wide range of energies. This confinement is achieved using a non-scaling magnetic field based on the Fixed Alternating Gradient principle where the field strength includes non-linear components. Examples of magnet configurations designed using this method are disclosed.
摘要:
The transmission of photons through a target produces “holes” in the transmitted energy spectrum that are characteristic of the NRF energies of the nuclear isotopes in the target. Measuring the absorption via the transmission of these photons through a target allows the production of tomographic images that are associated with specific nuclear isotopes. Thus three-dimensional density patterns are generated for the elements in a container. The process is very much like standard X-ray tomography but it identifies specific nuclear isotopes as well as their densities.