摘要:
The invention is based on an apparatus and a method for scanning specimens (1) using an optical imaging system (3) and a scanning stage (2), images of the specimen (1) being acquired by means of a camera (4), and/or measurements on the specimen (1) being made by means of an optical measurement device (5), at specimen points Xp, Yp. For that purpose, the scanning stage (2) is calibrated by obtaining and storing height values Z at different calibration positions X, Y of the scanning stage (2), and thereby generating a running height profile of the scanning stage (2). For the scanning of specimens (1), the specimen height positions Zp at specimen points Xp, Yp are determined by means of a reference height Zref of the specimen (1) together with the running height profile of the scanning stage (2). While each specimen point Xp, Yp is being traveled to with the scanning stage (2) the relevant specimen height position Zp is already being set, so that running errors of the scanning stage (2) are compensated for and image acquisitions or measurements are possible immediately upon reaching the specimen point Xp, Yp.
摘要翻译:本发明是基于使用光学成像系统(3)和扫描台(2)扫描样本(1)的装置和方法,通过照相机(4)获取样本(1)的图像, 和/或通过光学测量装置(5)在样本点X P1,Y P上进行样品(1)的测量。 为此,通过在扫描台(2)的不同校准位置X,Y处获取和存储高度值Z来校准扫描阶段(2),从而生成扫描台(2)的行进高度分布。 对于样品(1)的扫描,在样品点X P1,Y P p处的样品高度位置Z
摘要:
An autofocus module for a microscope-based system includes at least two light sources, each of which generates a light beam for focusing. An optical directing device is provided that directs a respective portion of each light beam onto an incoupling means, which couples each of the light beams into the illuminating light beam of the microscope-based system and directs the light beams onto a specimen. A first and a second detector receive the light beams of the first and second light source reflected from the surface of the specimen, and ascertain the intensities on the first and second detector in time-multiplexed fashion.
摘要:
A device and method for inspecting an object (2) uses a bright field illumination beam path (4) of a bright field light source (5), said beam path being formed so that it passes through the projection optics (3), and a dark field illumination beam path (6) of a dark field light source (7), this beam path being formed so that it also passes through the projection optics (3). The object (2) can be projected by the projection optics (3) onto the least one detector (8), and the object (2) is simultaneously illuminated by both light sources (5, 7). In order to simultaneously detect bright field images and dark field images without involving complicated filtering operations, the light used for the dark field illumination is pulsed and the pulse intensity of the light used for the dark field illumination is greater by at least one order of magnitude than the intensity of the continuous light, which is used for the bright field illumination, during a pulsed interval.
摘要:
The invention relates to a device and method for inspecting an object (2) involving the use of a bright field illumination beam path (4) of a bright field light source (5), said beam path being formed so that it passes through the projection optics (3), and involving the use or a dark field illumination beam path (6) of a dark field light source (7), this beam path being formed so that it also passes through the projection optics (3). The object (2) can be projected by the projection optics (3) onto the least one detector (8), and the object (2) is simultaneously illuminated by both light sources (5, 7). In order to simultaneously detect bright field images and dark field images without involving complicated filtering operations, the inventive device or method for inspecting an object (2) is characterized in that the light used for the dark field illumination is pulsed and in that the pulse intensity of the light used for the dark field illumination is greater by at least one order of magnitude than the intensity of the continuous light, which is used for the bright field illumination, during a pulsed interval.
摘要:
A method and an apparatus for driving a stepping motor is provided. Digital desired current values are stored in the form of a sine table and are read from the sine table at a constant sampling frequency. The intervals between the read-out table values can be varied equally and unequally. The digital desired current values are converted into discrete analog signals. A sinusoidal signal is reconstructed from the analog signals. A motor current for exciting a phase of the stepping motor is derived from the sinusoidal signal.