Abstract:
An apparatus (1) for the optical inspection of wafers is disclosed, which comprises an assembly unit (10) which carries optical elements (30, 31, 32, 33) of at least one illumination path (3) for a bright field illumination and optical elements (50, 51, 52, 60, 61, 62, 70, 71, 72, 80, 81, 82) of at least one illumination path (5, 6, 7, 8) for a dark field illumination. The assembly unit (10) furthermore carries plural optical elements (91, 92, 93, 94, 95, 96, 97, 98, 99, 100) of at least one detection path (91, 92). An imaging optical element (32) of the at least one illumination path (3) for the bright field illumination (30), imaging optical elements (51, 61, 71, 81) of the at least one illumination path for the dark field illumination, and imaging optical elements (91, 95, 96) of the at least one detection path (9) are designed in such a way that all illumination paths (3, 5, 6, 7, 8) and all detection paths (91, 92) are telecentric.
Abstract:
Previously used examination devices and methods mostly operate with reflected visible or UV light to analyze microstructured samples of a wafer (38), for example. The aim of the invention is to increase the possible uses of said devices, i.e. particularly in order to represent structural details, e.g. of wafers that are structured on both sides, which are not visible in VIS or UV because coatings or intermediate materials are not transparent. Said aim is achieved by using IR light as reflected light while creating transillumination (52) which significantly improves contrast in the IR image, among other things, thus allowing the sample to be simultaneously represented in reflected or transmitted IR light and in reflected visible light.
Abstract:
A measuring instrument for optical inspection of an object includes a light source for illuminating an object; a detector; an illuminating beam path extending from the light source to the object; a detection beam path extending from the object to the detector; an illuminating optics disposed in the illuminating beam path and/or an imaging optics disposed in the detection beam path for imaging the object onto the detector; a position evaluation device for determining a distance between two points of the object; and an optical device for imposing a profile of a continuously monotonic function on an intensity of light from the light source. The optical device is disposed in at least one of a pupil plane of the imaging optics, a pupil plane of the illuminating optics, and a plane in the illuminating or imaging beam path conjugate with the pupil plane of the imaging optics or the pupil plane of the illuminating optics.
Abstract:
In the production of semiconductor or other components, the structures are normally manufactured in different planes. In the orientation of these planes relative to each other a displacement or alignment is examined, among other things, and detected as an overlay defect. To reduce a systematic measuring defect a measuring device (10) is provided for measuring the overlay defect. This device has an illuminating device (12), a lens or objective (14) for focusing radiation from the illuminating device (12) onto the object (16) and a tube lens (18) for imaging the radiation onto a sensor unit (20). A compensator (22), in which the wave fronts of the incident radiation are tilted with spectral variation such that the axial transverse chromatic aberration is compensated for, is provided in the path of rays of the measuring device (10).
Abstract:
An illumination device according to the present invention comprises a light source (1), an optical fiber bundle (4), a coupling-in optical system (3) before and a coupling-out optical system (5) after the fiber bundle (4), and an illuminating optical system (17; 20). A homogenizing optical system (6) between the coupling-out optical system (5) and illuminating optical system (17; 20) brings about a homogenization of the intensity distribution in the image field. The homogenizing optical system (6) advantageously comprises a micro-honeycomb condenser (7) and a lens member (8) which superimpose the exit opening of the fiber bundle (4) in an intermediate image plane (10) to form a homogeneous intermediate image. The coordinate measuring instrument comprises an X-Y measurement stage (26) for receiving a substrate with a feature (31) that is to be measured, an illumination system with a light source (1), an optical fiber bundle (4), a coupling-in optical system (3), a coupling-out optical system (5), an illuminating optical system (17; 20) for illuminating an image field on the substrate, and a detector device (14) for determining the position of the feature. A homogenizing optical system (6) between the coupling-out optical system (5) and illuminating optical system (17; 20) brings about a homogenization of the intensity distribution in the image field.
Abstract:
A measuring instrument for optical inspection of an object includes a light source for illuminating an object; a detector; an illuminating beam path extending from the light source to the object; a detection beam path extending from the object to the detector; an illuminating optics disposed in the illuminating beam path and/or an imaging optics disposed in the detection beam path for imaging the object onto the detector; a position evaluation device for determining a distance between two points of the object; and an optical device for imposing a profile of a continuously monotonic function on an intensity of light from the light source. The optical device is disposed in at least one of a pupil plane of the imaging optics, a pupil plane of the illuminating optics, and a plane in the illuminating or imaging beam path conjugate with the pupil plane of the imaging optics or the pupil plane of the illuminating optics.
Abstract:
A critical dimension measuring instrument includes a light source, a beam-shaping optical system, a condenser having a condenser pupil, a first microlens array arrangement, a first auxiliary optical element having positive refractive power, a second auxiliary optical element having positive refractive power, and a second microlens array arrangement. The first microlens array arrangement, the first auxiliary optical element, the second auxiliary optical element and the second microlens array arrangement are arranged in successive fashion between the beam-shaping optical system and the condenser.
Abstract:
A method for focusing an object plane (42) through an objective (30) and an optical assembly (10), with which the method can be carried out, are disclosed. A geometric reference structure (21) is positioned in a plane (36) conjugate to a field plane (34) of the objective (30) and is imaged onto the object plane (42). The geometric reference structure (21) is illuminated with a light beam (24), which encloses a non-zero angle (φ) with a normal direction (38) of the conjugate plane (36). Therefore a position (Y) of an image (22) of the geometric reference structure (21) in the object plane (42) depends on the signed distance (37) between the object plane (42) and the field plane (34), and correspondingly is evaluated for the determination of the focus position. The optical assembly (10) preferentially may be a metrology tool (100) for measuring structures (120) on masks (100), wherein the objective (30) is the measurement objective of the metrology tool (100).
Abstract:
An apparatus (1) for the optical inspection of wafers is disclosed, which comprises an assembly unit (10) which carries optical elements (30, 31, 32, 33) of at least one illumination path (3) for a bright field illumination and optical elements (50, 51, 52, 60, 61, 62, 70, 71, 72, 80, 81, 82) of at least one illumination path (5, 6, 7, 8) for a dark field illumination. The assembly unit (10) furthermore carries plural optical elements (91, 92, 93, 94, 95, 96, 97, 98, 99, 100) of at least one detection path (91, 92). An imaging optical element (32) of the at least one illumination path (3) for the bright field illumination (30), imaging optical elements (51, 61, 71, 81) of the at least one illumination path for the dark field illumination, and imaging optical elements (91, 95, 96) of the at least one detection path (9) are designed in such a way that all illumination paths (3, 5, 6, 7, 8) and all detection paths (91, 92) are telecentric.
Abstract:
A method, a device and the application for the inspection of defects on the edge region of a wafer (6) is disclosed. At least one illumination device (41) illuminates the edge region (6a) of the wafer (6). At least one optical unit (40) is provided, said optical unit (40) being positionable subject to the position of the defect (88) relative to a top surface (30) of the edge of the wafer (6a) or a bottom surface (31) of the edge of the wafer (6a) or a face (32) of the edge of the wafer (6a) for capturing an image of said defect.