摘要:
The invention relates to a method of preparing a catalytic composition comprising at least one non-noble metal from group VIII and at least one metal from group VIB of the periodic table. The invention also relates to the catalytic composition thus produced, which has a high specific activity in reactions involving the hydroprocessing of light and intermediate fractions, preferably in reactions involving the hydrotreatment of hydrocarbon streams, including hydrodesulphurisation (HDS), hydrodenitrogenation (HDN) and hydro-dearomatisation (HDA).
摘要:
An adsorbent composition comprising a nanostructured titanium oxide material of the formula TiO2-, where 0≦×≦1 with nanotubular and/or nanofibrilar morphology, high oxygen deficiency, having an orthorhombic JT crystalline phase described by at least one of the space groups 59 Pmmn, 63 Amma, 71Immm or 63 Bmmb, and comprising between 0 and 20 weight percent of a transition metal oxide is used for the selective adsorption of nitrogen compounds and/or sulfur compounds from light and intermediate petroleum fractions.
摘要翻译:一种吸附剂组合物,其包含式TiO 2 2-的纳米结构氧化钛材料,其中0 <= x <= 1,具有纳米管和/或纳米纤维形态,具有高氧缺陷,具有所述的正交JT结晶相 通过至少一个空间组59 Pmmn,63Amma,71Immm或63Bmmb,并且包含0至20重量%的过渡金属氧化物,用于从光和中间体选择性吸附氮化合物和/或硫化合物 石油馏分。
摘要:
The invention relates to a method of preparing a catalytic composition comprising at least one non-noble metal from group VIII and at least one metal from group VIB of the periodic table. The invention also relates to the catalytic composition thus produced, which has a high specific activity in reactions involving the hydroprocessing of light and intermediate fractions, preferably in reactions involving the hydrotreatment of hydrocarbon streams, including hydrodesulphurization (HDS), hydrodenitrogenation (HDN) and hydro-dearomatization (HDA).
摘要:
The present invention relates to the preparation of Multimetallic Anionic Clays (MACs) through a simple method, which are then shaped by spray-drying into microspheres with adequate mechanical properties, suitable to be fluidized. The microspheres are appropriate for application as additives in the Fluid Catalytic Cracking (FCC) process, i.e. blended with the conventional catalyst, to in situ remove sulfur oxides (SOx) from the combustion gases produced in the regeneration stage of the FCC process, when cracking sulfur-containing hydrocarbon feeds. An oxidation promoter is added to the MACs in order to promote the oxidation of SO2 to SO3, a key step in SOx removal, providing more efficient and versatile materials, which are apt to be used in atmospheres with variable oxygen concentration.