Abstract:
A single photon detector includes a superconductor strip biased near its critical current. The superconductor strip provides a discernible output signal upon absorption of a single incident photon. In one example, the superconductor is a strip of NbN (niobium nitride). In another example, the superconductor strip meanders to increase its probability of receiving a photon from a light source. The single-photon detector is suitable for a variety of applications including free-space and satellite communications, quantum communications, quantum cryptography, weak luminescence, and semiconductor device testing.
Abstract:
A magneto-optic modulator modulates signals from a superconducting circuit such as a single-flux-quantum (SFQ) logic system onto a carrier wave light beam. The modulator is formed by depositing a magneto-optic material such as EuSe onto a superconducting ground plane such as that of the circuit. A microwave microstrip line is formed on the magneto-optic material and carries a signal from the circuit. The signal induces an H field in the magneto-optic material which causes the magneto-optic material to modulate the light.
Abstract:
A single-photon detector includes a superconductor strip biased near its critical current. The superconductor strip provides a discernible output signal upon absorption of a single incident photon. In one example, the superconductor is a strip of NbN (niobium nitride). In another example, the superconductor strip meanders to increase its probability of receiving a photon from a light source. The single-photon detector is suitable for a variety of applications including free-space and satellite communications, quantum communications, quantum cryptography, weak luminescence, and semiconductor device testing.
Abstract:
A single-photon detector includes a superconductor strip biased near its critical current. The superconductor strip provides a discernible output signal upon absorption of a single incident photon. In one example, the superconductor is a strip of NbN (niobium nitride). In another example, the superconductor strip meanders to increase its probability of receiving a photon from a light source. The single-photon detector is suitable for a variety of applications including free-space and satellite communications, quantum communications, quantum cryptography, weak luminescence, and semiconductor device testing.
Abstract:
A frequency converter for electromagnetic waves of the millimetric and submillimetric band comprising an open resonator whose reflectors are of diameter larger than the dimensions of the cross-section of radiation beam, said reflectors or at least one of them being an arrangement of metallic conductors and to said conductors being connected one or more Josephson junctions. Said conductors are equipped with external contacts situated on the circumference of the converter and used to interconnect the Josephson junctions.The converter finds applications as a detector of electromagnetic waves of the millimetric and submillimetric band and/or as a mixer of waves of different wavelength.