Abstract:
A light detection device including a substrate, a first light detector, a second light detector, and a switch element is provided. The first light detector is disposed on the substrate and includes a first active layer. The second light detector is disposed between the substrate and the first light detector and includes a second active layer. The switch element is disposed on the substrate. A horizontal projection of the second active layer on the substrate completely falls within a horizontal projection of the first active layer on the substrate. A negative electrode of the first light detector and a negative electrode of the second light detector are electrically connected to the switch element via a first metal layer.
Abstract:
Manufacturing opto-electronic modules (1) includes providing a substrate wafer (PW) on which detecting members (D) are arranged; providing a spacer wafer (SW); providing an optics wafer (OW), the optics wafer comprising transparent portions (t) transparent for light generally detectable by the detecting members and at least one blocking portion (b) for substantially attenuating or blocking incident light generally detectable by the detecting members; and preparing a wafer stack (2) in which the spacer wafer (SW) is arranged between the substrate wafer (PW) and the optics wafer (OW) such that the detecting members (D) are arranged between the substrate wafer and the optics wafer. Emission members (E) for emitting light generally detectable by the detecting members (D) can be arranged on the substrate wafer (PW). Single modules (1) can be obtained by separating the wafer stack (2) into separate modules.
Abstract:
Disclosed are optical devices and methods of manufacturing optical devices. An optical device can include a substrate; an optical emitter chip affixed to the front surface of the substrate; and an optical sensor chip affixed to the front surface of the substrate. The optical sensor chip can include a main sensor and a reference sensor. The optical device can include an opaque dam separating the main optical sensor and the reference sensor. The optical device can include a first transparent encapsulation block encapsulating the optical emitter chip and the reference optical sensor and a second transparent encapsulation block encapsulating the main optical sensor. The optical device can include an opaque encapsulation material encapsulating the first transparent encapsulation block and the second transparent encapsulation block with a first opening above the main optical sensor and a second opening above the optical emitter chip.
Abstract:
An imaging system may include several different types of pixels that are each configured to detect different characteristics of light received at the imaging system. An imaging system may include image sensing pixels that detect the wavelength and intensity of the light, direction sensing pixels that detect the directionality of the light, polarization sensing pixels that detect a polarization state of the light, and diffractive wavelength separation pixels that detect multiple different wavelength components of the light. One or more pixels of the different types may be arranged in a pixel cluster. A pixel cluster that includes different pixel types may detect spatially correlated information for multiple characteristics of the light. Multiple pixel clusters may be arranged in a pixel array that generates an image based on spatially correlated information for the different characteristics of the light.
Abstract:
An electronic device includes a light source, a light receiver, a first light guide structure, and a second light guide structure. The first light guide structure faces a light emitting surface of the light source and faces a lateral wall of the light receiver. The second light guide structure is disposed over the light receiver and coupled to the first light guide structure. The light receiver and the second light guide structure defines a cavity between the light receiver and the second light guide structure.
Abstract:
An optical sensor, an optical examination device, and a method of detecting optical properties. The optical sensor includes an irradiation system including light irradiator to irradiate a test object with light, and a detection system to detect the light that is emitted from the irradiation system to the test object and has propagated through the test object. The light irradiator includes a multilayered structure having an active layer, and the multilayered structure includes a surface-emitting laser element and a photo-sensing element optically connected to the surface-emitting laser element. The optical examination device includes the optical sensor, and a controller to calculate optical properties of the test object based on a detection result of the optical sensor. The method includes performing optical simulation to obtain a detection light quantity distribution for an optical model and performing inverse problem estimation.
Abstract:
An image sensor with an array of pixels is provided. In order to achieve high image quality, it may be desirable to improve well capacity of individual pixels within the array by forming deep photodiodes in a thick substrate. When forming the array of pixels, conductive contacts may be formed in a back surface of the substrate opposing ground contacts located on a front side of the substrate. A conductive grid layer may be formed over the conductive contacts. A color filter layer may be formed over the conductive grid layer that may include a barrier grid in which color filter material is deposited. The conductive grid layer and conductive contacts may be biased to a voltage to improve the strength of electric fields in the substrate. Conductive contacts will thereby improve charge collection and electrical isolation and prevent electrical crosstalk and blooming.
Abstract:
A detection method for electronic devices including steps as follows is provided. The detection method includes: providing an electronic device substrate; attaching a portion of electronic devices of the electronic device substrate through an electronic device transfer module, wherein the electronic device transfer module includes a plurality of detecting elements corresponding to the portion of the electronic devices, and each of the detecting elements includes at least one pair of electrodes; detecting whether a conducting path between the at least one pair of electrodes is generated or not to confirm a status of contact between the portion of the electronic devices and a contact target; and transferring the portion of the electronic devices attached to the electronic device transfer module to a target substrate. An electronic device transfer module having detecting elements is also provided.
Abstract:
An optical receiver including a photodetector and a waveguide is provided. The photodetector includes a plurality of photosensitive regions arranged in an array. The waveguide is disposed on the photodetector and includes a plurality of gratings, a plurality of optical channels, and a plurality of light-deflection elements. The gratings are respectively adapted to collect light beams incident on the waveguide at different angles. The optical channels are adapted to propagate the light beams collected by the gratings. The light-deflection elements are disposed on transmission paths of the light beams propagating in the optical channels and are located above the photosensitive regions. The light-deflection elements are adapted to propagate the light beams propagating in the optical channels to the photosensitive regions. An optical transceiver is also provided.
Abstract:
An optical sensing module includes a substrate, a cover, a plurality of light-emitting chips, a light-receiving chip, and a plurality of encapsulants. The cover is disposed on the substrate. A plurality of first chambers and a second chamber are formed between the cover and the substrate. The cover has a plurality of light-emitting holes communicating with the first chambers, respectively, and a light-receiving hole communicating with the second chamber. The light-emitting chips are disposed on the substrate and in the first chambers, respectively. The light-receiving chip is disposed on the substrate and in the second chamber. The encapsulants fill the first and second chambers and enclose the light-emitting chips and the light-receiving chip, respectively. Hence, characterized in that: the light-emitting chips and the light-receiving chip are disposed on the substrate, and the light-emitting chips emit light beams in different colors to enhance light emission efficiency.