Abstract:
A data processing device is described with a memory and a first and a second data processing component. The first data processing component comprises a control memory comprising, for each memory region of a plurality of memory regions of the memory, an indication whether a data access to the memory region may be carried out by the first data processing component and a data access circuit configured to carry out a data access to a memory region of the plurality of memory regions if a data access to the memory region may be carried out by the first data processing component; and a setting circuit configured to set the indication for a memory region to indicate that a data access to the memory region may not be carried out by the first data processing component in response to the completion of a data access of the first data processing component to the memory region.
Abstract:
The invention relates to a method for detection of impedances, in particular along inductances, in telephone lines of the type with two metal wires as signal conductors (twisted pair), having the following method steps: a test signal in the form of an AC voltage is fed into the telephone line, a measurement signal of the reflection signal of the test signal is measured, which can be tapped off the input impedance of the entire line at the start of the line, the first method steps are carried out at a number of different frequencies within a preselected frequency range of the AC voltage of the test signal, the profile of the measurement signals is analyzed as a function of the frequency, with the derivative of the profile of the measurement signals being formed based on the frequency, at which point the second derivative of the profile of the measurement signals is formed based on the frequency, the profile of the second derivative of the profile of the measurement signals based on the frequency is investigated for one or more mathematical sign changes. The invention also relates to a method for qualification of telephone lines of the type with two metal wires as signal conductors (twisted pair) for suitability for data transmissions based on the DSL Standard, and to use of a DSL modem for carrying out methods such as this.
Abstract:
For reconstructing a data clock from asynchronously transmitted data packets, a control loop is provided which includes a controlled oscillator. An input signal of the control loop is generated on the basis of the received data packets. At least one high-pass type filter is provided in a signal path of the control loop. The data clock for the synchronous output of data is generated on the basis of an output signal of the controlled oscillator.
Abstract:
At an ingress interface of a data network first information data are generated, at an egress interface of the data network second information data are generated, correction data are generated on the basis of the second information data, and at the egress interface a clock frequency is recovered on the basis of the first information data and the correction data.
Abstract:
A data processing device is described with a memory and a first and a second data processing component. The first data processing component comprises a control memory comprising, for each memory region of a plurality of memory regions of the memory, an indication whether a data access to the memory region may be carried out by the first data processing component and a data access circuit configured to carry out a data access to a memory region of the plurality of memory regions if a data access to the memory region may be carried out by the first data processing component; and a setting circuit configured to set the indication for a memory region to indicate that a data access to the memory region may not be carried out by the first data processing component in response to the completion of a data access of the first data processing component to the memory region.
Abstract:
At an ingress interface of a data network first information data are generated, at an egress interface of the data network second information data are generated, correction data are generated on the basis of the second information data, and at the egress interface a clock frequency is recovered on the basis of the first information data and the correction data.
Abstract:
A method and a system for providing information for recovering a clock frequency via a data network comprise generating a value representative of a frequency difference between a clock frequency and a reference frequency by using a digital phase-locked loop at an ingress interface of a data network, transmitting the generated value over the data network, and recovering the clock frequency at an egress interface of the data network by using the reference frequency and the transmitted value. Other systems and methods are also disclosed.
Abstract:
For reconstructing a data clock from asynchronously transmitted data packets, a control loop is provided which includes a controlled oscillator. An input signal of the control loop is generated on the basis of the received data packets. At least one high-pass type filter is provided in a signal path of the control loop. The data clock for the synchronous output of data is generated on the basis of an output signal of the controlled oscillator.
Abstract:
A method and a system for providing information for recovering a clock frequency via a data network comprise generating a value representative of a frequency difference between a clock frequency and a reference frequency by using a digital phase-locked loop at an ingress interface of a data network, transmitting the generated value over the data network, and recovering the clock frequency at an egress interface of the data network by using the reference frequency and the transmitted value. Other systems and methods are also disclosed.
Abstract:
A signal transmission apparatus includes a higher-level station, a lower-level station and a digital transmission device connected between the stations and having a signal transit time to be measured. Each of the stations has a transmitter for sending useful signals, each clocked by a respective clock signal, through the transmission device to other station. Each of the stations has a receiver for receiving the useful signals clocked by the other station and for separating out the clock signal superimposed on the applicable useful signal. The useful signal to be transmitted in the higher-level station is clocked by a given clock signal. The useful signal to be transmitted in the lower-level station is clocked by a clock signal derived from the clock signal separated out from the receiver of the lower-level station. The higher-level station has a phase comparator for comparing the given clock signal with the clock signal separated out by the receiver of the higher-level station and supplying a comparison outcome. The higher-level station has an arithmetic unit for calculating the signal transit time from the comparison outcome.