Abstract:
A soft tissue fixation device for organs proximate shankbone includes a fixing body, a fixing plate, and a plurality of fixing components for attaching the fixing plate to the fixing body. The fixing body forms an arcuate bound portion on a side thereof. A plurality of engaging holes is defined in a surface of the bound portion. The fixing plate is arcuate and defines at least a positioning hole substantially in a center thereof for passing a suture through, and fixing holes respectively adjacent both sides thereof for corresponding to the engaging holes. The suture and ligament are positioned reliably with respect to the fixing body. The fixing plate is adjustable in height and orientation.
Abstract:
An artificial joint fixation mechanism has a base for being attached to an artificial joint, a stem for guiding an artificial joint to engage with a human bone, and a sleeve. The base defines a conic shaft hole therethrough. At least a positioning section and at least a threaded section are extended adjacent an end of the shaft hole. The stem includes an engaging pole at an end thereof for jointing to an artificial joint. The sleeve is threaded for screwing to the threaded section and defines an inner cone hole therethrough. In use, the engaging pole of the stem implants into the shaft hole. The sleeve is screwed to the threaded section, and the inner cone hole reversely pressing against the guiding section. Thus the stem is pressed reliably.
Abstract:
This invention features a method for enhancing bone growth or inhibiting bone resportion. The method includes administering to a subject in need thereof a compound of the following formula: A is H, R, or each of Ar1, Ar2, and Ar3, independently, is phenyl, thienyl, furyl, or pyrrolyl; each of R1, R2, R3, R4, R5, and R6, independently, is H, halogen, R, C(O)OH, C(O)OR, C(O)SH, C(O)SR, C(O)NH2, C(O)NHR, C(O)NRR′, ROH, ROR′, RSH, RSR′, NHR, NRR′, RNHR′, or RNR′R″; or R1 and R2 together, R3 and R4 together, or R5 and R6 together are ORO; wherein each of R, R′, and R″, independently is C1˜C6 alkyl; and n is 1, 2, or 3.
Abstract:
An artificial joint fixation mechanism has a base for being attached to an artificial joint, a stem for guiding an artificial joint to engage with a human bone, and a sleeve. The base defines a conic shaft hole therethrough. At least a positioning section and at least a threaded section are extended adjacent an end of the shaft hole. The stem includes an engaging pole at an end thereof for jointing to an artificial joint. The sleeve is threaded for screwing to the threaded section and defines an inner cone hole therethrough. In use, the engaging pole of the stem implants into the shaft hole. The sleeve is screwed to the threaded section, and the inner cone hole reversely pressing against the guiding section. Thus the stem is pressed reliably.
Abstract:
This invention features a method for enhancing bone growth or inhibiting bone resportion. The method includes administering to a subject in need thereof a compound of the following formula: A is H, R, or each of Ar1, Ar2, and Ar3, independently, is phenyl, thienyl, furyl, or pyrrolyl; each of R1, R2, R3, R4, R5, and R6, independently, is H, halogen, R, C(O)OH, C(O)OR, C(O)SH, C(O)SR, C(O)NH2, C(O)NHR, C(O)NRR′, ROH, ROR′, RSH, RSR′, NHR, NRR′, RNHR′, or RNR′R″; or R1 and R2 together, R3 and R4 together, or R5 and R6 together are ORO; wherein each of R, R′, and R″, independently is C1˜C6 alkyl; and n is 1, 2, or 3.