Abstract:
An explanation is given of an integrated interconnect arrangement having a plurality of interconnects that cross over one another at two crossover sections. By virtue of this measure, it is possible to achieve a uniform current flow in all three interconnects even at very high frequencies.
Abstract:
Integrated interconnect arrangement An explanation is given of an integrated interconnect arrangement (12) having a plurality of interconnects (LB1 to LB3) that cross over one another at two crossover sections (20, 24). By virtue of this measure, it is possible to achieve a uniform current flow in all three interconnects even at very high frequencies.
Abstract:
An improved method of producing vinyl chloride by pyrolysis of purified 1,2-dichloroethane at temperatures from 480.degree. C. to 540.degree. C. at a pressure of 10 to 36 bar absolute with partial utilization of the heat content of the flue gases from the pyrolysis furnace firing to preheat liquid 1,2-dichloroethane almost to its boiling temperature utilizing the flue gas waste heat to generate steam, cool the pyrolysis gas mixture in several stages and separate the hydrogen chloride from the pyrolysis gas mix in a hydrogen chloride column as well as separate vinyl chloride from the pyrolysis gas mix in a vinyl chloride monomer column.
Abstract:
An improved process for the preparation of vinyl chloride from 1,2-dichloroethane (EDC) wherein 0.10 to 0.15 % by weight of carbon tetrachloride based on EDC, is used as a cracking promoter and the CHCl.sub.3 content is limited to less than 200 ppm. Before being fed to the cracking zone, the EDC is brought almost to the boiling point at 15 to 31 bar and then expanded to 10 to 16 bar with flashing EDC vapors and the fraction which has remained liquid is vaporized externally, and the combined EDC gas streams are heated, after being fed into the cracking furnaces, so that the energy required for cracking is already supplied in the first 75 to 85% of the reaction zone, whereby a conversion of 60 to 70% is obtained at residence time from 10 to 25 seconds and the exit temperature from the reaction zone is 485.degree. to 510.degree. C.
Abstract:
In a process for the purification of hydrogen chloride from the pyrolysis of 1,2-dichloroethane, optionally after a preceding step of acetylene removal by selective hydrogenation under specific conditions followed by rectification of the resulting mixture to obtain hydrogen chloride containing at most 5 ppm of unsaturated hydrocarbons and at most 5 ppm of chlorinated hydrocarbons.
Abstract:
An improved process for the removal of acetylene from a hydrogen chloride stream in which the acetylene is converted to vinyl chloride by contact with a hydrochlorination catalyst, the improvement comprising, prior to contacting the stream with the hydrochlorination catalyst, contacting said stream with a catalyst comprising a noble metal, preferably of the platinum group, or salt or oxide thereof, supported or unsupported, at a temperature of between about 50.degree. and about 200.degree. C. and a pressure between about 8 and about 20 bar absolute.
Abstract:
A water-miscible organic solvent is recovered from a mixture containing the solvent and water by adding an inert compound which is immiscible with the water and has a vapor pressure of no more than 5 mm Hg (abs.) at 100.degree. C. to the mixture and thereafter distilling off the organic solvent.
Abstract:
A field-effect transistor (FET) structure and method of formation thereof is presented. The FET structure includes first and second source/drain regions formed in a semiconductor substrate to define a channel region. A gate insulation layer is formed at a surface of the channel region. A control layer is formed at a surface of the gate insulation layer. A diode doping region is formed to realize a diode in the semiconductor substrate. An electrically conductive diode connection layer connects the diode doping region to the control layer. A depression is formed in the semiconductor substrate. The diode doping region is formed at a bottom of the depression and the diode connection layer is formed in the depression to dissipate excess charge carriers in the semiconductor substrate.
Abstract:
The present invention provides a method for fabricating a semiconductor structure having a plurality of gate stacks (GS1, GS2, GS3, GS4) on a semiconductor substrate (10), having the following steps: application of the gate stacks (GS1, GS2, GS3, GS4) to a gate dielectric (11) above the semiconductor substrate (10); formation of a sidewall oxide (17) on sidewalls of the gate stacks (GS1, GS2, GS3, GS4); application and patterning of a mask (12) on the semiconductor structure; and implantation of a contact doping (13) in a self-aligned manner with respect to the sidewall oxide (17) of the gate stacks (GS1, GS2) in regions not covered by the mask (12).
Abstract:
In a method of treating the reaction product of pyrolysis of 1,2-dichloroethane to form vinyl chloride and hydrogen chloride with multiple stage cooling and distillation separation of the reaction product and recycle of unreacted 1,2-dichloroethane to the pyrolysis step, the improvement comprising direct cooling of the reaction product immediately after leaving the pyrolysis step, within 1 sec from a temperature range of 480.degree. to 540.degree. C. down to 150.degree. to 250.degree. C., charging the cooled product into a quench column, recovering the vapors from the head of the quench column and indirectly cooling the same by heat exchange to at least its condensation point, the heat exchange media being at least one member of the group consisting of (a) 1,2-dichloroethane to be fed in heated condition to the pyrolysis unit, (b) air used as combustion air to fire the pyrolysis zone, (c) the sump of the hydrogen chloride column as defined above, (d) liquid hydrogene chloride to be evaporated and, (e) water, to dissipate heat not used within the measures according to the present invention.