Abstract:
An uninterruptible power supply (UPS) system includes a plurality of UPSs configured to be output paralleled. Availability information is communicated from the UPSs, and an aggregate availability of the UPSs is determined responsive to the communicated availability information. Parallel provision of power from the UPSs may be selectively enabled responsive to the determined aggregate availability. The aggregate availability information may also be reported to a user. The aggregate availability may be, for example, a redundancy level and/or a percentage availability provided by the UPSs. The invention may be embodied as methods, apparatus and computer program products.
Abstract:
A power supply apparatus, such as an on-line UPS, includes an AC/DC converter circuit having an input configured to be coupled to an AC source, a DC/AC converter circuit having an input coupled to an output of the AC/DC converter circuit by a DC link, and a bypass circuit operative to couple and decouple the output of the DC/AC converter circuit to and from the input of the AC/DC converter circuit. Power is transferred from the output of DC/AC converter circuit via the bypass circuit to conduct a test of the apparatus, such as a factory or field load test. For example, power may be circulated around a loop including the AC/DC converter circuit, the DC/AC converter circuit and the bypass circuit to conduct the test in order to test these components under load. A status of such components may be determined responsive to the test. In further embodiments, such components may be calibrated responsive to the test.
Abstract:
A modular uninterruptible power supply (UPS) system includes a plurality of UPS system component modules, each configured to be arranged in at least one equipment rack, each of the UPS system component modules having at least one flexible power cable extending therefrom and having a pluggable first connector at an end thereof. The system also includes a modular power interconnect assembly configured to be attached to at least one equipment rack, the modular power interconnect assembly including a housing, a plurality of bus bars positioned within the housing, and a plurality of second connectors positioned at a face of the housing, electrically connected to the plurality of bus bars and configured to pluggably mate with the first connectors to provide electrical interconnection among the plurality of UPS system component modules.
Abstract:
Power interconnect assemblies include a longitudinally extending base member including a plurality of longitudinally extending bus bar receiving channels configured to receive longitudinally extending bus bars. An interconnect module is configured to be coupled to the base member. The interconnect module is configured to receive a connector member that is configured to receive a pluggable connectorized cable from a power component. The base member is configured so that ones of a plurality of electrical connectors of the connector member may be coupled to corresponding ones of the bus bars with the bus bars inserted in the channels.
Abstract:
An uninterruptible power supply apparatus includes a first bidirectional power converter circuit having first and second ports and a second bidirectional power converter circuit having first and second ports. The apparatus further includes a DC link that couples the second port of the first bidirectional power converter circuit to the first port of the second bidirectional power converter circuit. A first load port is coupled to the second port of the second bidirectional power converter circuit and a second load port is coupled to the first port of the first bidirectional power converter circuit. The apparatus further includes a control circuit that is configured to control the first and second bidirectional power converter circuits such that each of the first and second bidirectional power converter circuits can generate and/or condition AC power at each of the first and second load ports.
Abstract:
A device and method for registering the displacement of a vehicle using a video camera device located above the ground and including a pair of cameras spaced parallel to the ground and directed to record on their respective image planes areas of the ground which overlap at least partly whereby there are produced in the cameras pairs of stereo records. These pairs of stereo records are utilized in an image processing of the mutual locations of contrast fields within the contour of the vehicle for comparison. The contrast fields are located at different height levels above the ground so that evaluation of at least one of the fields may be used in the image processing as an indicator in tracking the displacement of the vehicle for successive positions of displacement to be registered.
Abstract:
A power supply system includes an AC input configured to be coupled to an AC source, an AC output configured to be coupled to a load, a UPS having an input coupled to the AC input and an output coupled to the AC output and a bypass circuit coupled between the AC input and the AC output and configured to open and close a bypass path therebetween. The system further includes a controller configured to control the UPS and the bypass circuit such that the UPS operates as an online UPS for a first input voltage magnitude condition at the AC input and as a standby UPS for a second input voltage magnitude condition at the AC input. A multi-mode converter may be coupled to a DC link of the UPS and configured to be selectively coupled to a battery and the AC input to respectively support battery conversion and current control at the AC input in respective first and second modes of operation of the UPS.
Abstract:
PCT No. PCT/SE78/00067 Sec. 371 Date July 2, 1979 Sec. 102(e) Date June 29, 1979 PCT Filed July 2, 1979 PCT Pub. No. W079/00260 PCT Pub. Date May 17, 1979A correlation follower comprising an image sensor (1) adjustable sideways and in height with a limited field of view, which is cyclically scanned by the sensor the output signal of which reflects the image content within the field of view and a video correlator (3) for controlling the alignment of the sensor in dependance of the output signal of the image sensor.The video correlator (3) has two addressable memories (12, 14) the one of which is a real time memory (12), i.e. in this memory a section of the field of view is stored for each cycle. The other memory is a reference image memory (14) and is updated with the content of the real time memory (12). During the correlation the contents of the memories are displaced in relation to each other and an error signal, corresponding to the position of displacement for which maximum correlation is achieved, is made to control, through said control circuits, the alignment of the sensor.To make the tracking process insensitive to disturbancies and image elements which appear momentarily in the field of view, for each scanning cycle only a part of the positions of the reference image memory (14) are updated by selecting the addresses to said positions randomly or according to a predetermined rule of selection. By that the positions which are updated during one cycle in positions that are distributed over the entire area of the memory.