摘要:
Disclosed is a method for manufacturing a magnetic storage device comprising a TMR element, which comprises a step for forming an insulting film on an interlayer insulating film provided with a wiring layer, an opening formation step for forming an opening in the insulating film so that the wiring layer is exposed therefrom, a metal layer formation step for forming a metal layer on the insulating layer so that the opening is filled therewith, a CMP step for polishing and removing the metal layer on the insulating layer by a CMP method and forming the metal layer remaining in the opening into a lower electrode, and a step for forming a TMR element on the lower electrode. Also disclosed is a magnetic storage device comprising an interlayer insulating film provided with a wiring layer, an insulating film formed on the interlayer insulating film, an opening formed in the insulating film so that the wiring layer is exposed therefrom, a barrier metal layer provided so as to cover the inner surface of the opening, a lower electrode formed on the barrier metal so as to fill the opening, and a TMR element formed on the lower electrode.
摘要:
A magnetic storage device stable in write characteristic is provided. A first nonmagnetic film is provided over a recording layer. A first ferromagnetic film is provided over the first nonmagnetic film and has a first magnetization and a first film thickness. A second nonmagnetic film is provided over the first ferromagnetic film. A second ferromagnetic film is provided over the second nonmagnetic film, is coupled in antiparallel with the first ferromagnetic film, and has a second magnetization and a second film thickness. An antiferromagnetic film is provided over the second ferromagnetic film. The sum of the product of the first magnetization and the first film thickness and the product of the second magnetization and the second film thickness is smaller than the product of the magnetization of the recording layer and the film thickness of the recording layer.
摘要:
A semiconductor device having a MTJ device excellent in operating characteristics and a manufacturing method therefor are provided. The MTJ device is formed of a laminated structure which is obtained by laminating a lower magnetic film, a tunnel insulating film, and an upper magnetic film in this order. The lower and upper magnetic films contain noncrystalline or microcrystalline ferrocobalt boron (CoFeB) as a constituent material. The tunnel insulating film contains aluminum oxide (AlOx) as a constituent material. A CAP layer is formed over the upper magnetic film and a hard mask is formed over the CAP layer. The CAP layer contains a substance of crystalline ruthenium (Ru) as a constituent material and the hard mask contains a substance of crystalline tantalum (Ta) as a constituent material. The film thickness of the hard mask is larger than that of the CAP layer.
摘要:
To provide a manufacturing method of a semiconductor device capable of forming, as a protective film of an MTJ element, a silicon nitride film having good insulation properties without deteriorating the properties of the MTJ element. The method of the invention includes steps of forming a silicon nitride film over the entire surface including an MTJ element portion (MTJ element and an upper electrode) while using a parallel plate plasma CVD apparatus as a film forming apparatus and a film forming gas not containing NH3 but composed of SiH4/N2/helium (He). The film forming temperature is set at from 200 to 350° C. More ideally, a flow rate ratio of He to SiH4 is set at from 100 to 125.
摘要:
To provide a manufacturing method of a semiconductor device capable of forming, as a protective film of an MTJ element, a silicon nitride film having good insulation properties without deteriorating the properties of the MTJ element. The method of the invention includes steps of forming a silicon nitride film over the entire surface including an MTJ element portion (MTJ element and an upper electrode) while using a parallel plate plasma CVD apparatus as a film forming apparatus and a film forming gas not containing NH3 but composed of SiH4/N2/helium (He). The film forming temperature is set at from 200 to 350° C. More ideally, a flow rate ratio of He to SiH4 is set at from 100 to 125.
摘要:
To provide a manufacturing method of a semiconductor device capable of forming, as a protective film of an MTJ element, a silicon nitride film having good insulation properties without deteriorating the properties of the MTJ element. The method of the invention includes steps of forming a silicon nitride film over the entire surface including an MTJ element portion (MTJ element and an upper electrode) while using a parallel plate plasma CVD apparatus as a film forming apparatus and a film forming gas not containing NH3 but composed of SiH4/N2/helium (He). The film forming temperature is set at from 200 to 350° C. More ideally, a flow rate ratio of He to SiH4 is set at from 100 to 125.
摘要:
To provide a semiconductor device capable of further suppressing the leakage of magnetic field in a magnetoresistive element and capable of further improving performance.There is provided a semiconductor device comprising a semiconductor substrate, a magnetoresistive element, a wire, barrier layers, and cladding layers. The semiconductor substrate has a main surface. The magnetoresistive element is located over the main surface of the semiconductor substrate. The wire is located over the magnetoresistive element. The barrier layers are arranged so as to continuously cover the side surface and the top surface of the wire. The cladding layers are arranged so as to continuously cover the surfaces of the barrier layers facing the wire and the surfaces on the opposite side. A plurality of memory units including the magnetoresistive element, the wire, the barrier layers, and the cladding layers is formed. The memory units are arranged in parallel in the direction intersecting with the direction in which the wire extends, and the cladding layers are separated between the memory units.
摘要:
A method for manufacturing a magnetic memory device which includes a TMR element, and the method includes: a step of forming a lower wiring layer; a step of forming an interlayer insulating layer on the lower wiring layer; a step of forming an opening in the interlayer insulating layer so that the lower wiring layer is exposed; a step of forming a barrier metal layer so that the interlayer insulating layer and an inner surface of the opening are covered; a step of forming a metal layer on the barrier metal layer so that the opening is embedded; a polishing step of removing the metal layer on the barrier metal layer through polishing using the barrier metal layer as a stopper so that a wiring layer that includes a metal layer being embedded in the opening and the barrier metal layer is formed; and an element fabricating step of fabricating a TMR element on the wiring layer.
摘要:
The semiconductor device which has a memory cell including the TMR film with which memory accuracy does not deteriorate, and its manufacturing method are obtained. A TMR element (a TMR film, a TMR upper electrode) is selectively formed in the region which corresponds in plan view on a TMR lower electrode in a part of formation area of a digit line. A TMR upper electrode is formed by 30-100 nm thickness of Ta, and functions also as a hard mask at the time of a manufacturing process. The interlayer insulation film formed from LT-SiN on the whole surface of a TMR element and the upper surface of a TMR lower electrode is formed, and the interlayer insulation film which covers the whole surface comprising the side surface of a TMR lower electrode, and includes LT-SiN is formed. The interlayer insulation film which covers the whole surface and includes SiO2 is formed.
摘要:
A semiconductor device having a MTJ device excellent in operating characteristics and a manufacturing method therefor are provided. The MTJ device is formed of a laminated structure which is obtained by laminating a lower magnetic film, a tunnel insulating film, and an upper magnetic film in this order. The lower and upper magnetic films contain noncrystalline or microcrystalline ferrocobalt boron (CoFeB) as a constituent material. The tunnel insulating film contains aluminum oxide (AlOx) as a constituent material. A CAP layer is formed over the upper magnetic film and a hard mask is formed over the CAP layer. The CAP layer contains a substance of crystalline ruthenium (Ru) as a constituent material and the hard mask contains a substance of crystalline tantalum (Ta) as a constituent material. The film thickness of the hard mask is larger than that of the CAP layer.