摘要:
Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
A rare earth magnet powder has a chemical composition which includes R: 5 to 20% (wherein, R represents one or two or more rare earth elements being inclusive of Y but exclusive of Dy and Tb), one or two of Dy and Tb: 0.01 to 10%, and B: 3 to 20%, with the balance comprising Fe and inevitable impurities; and an average particle diameter of 10 to 1,000 μm, wherein 70% or more of the entire surface of the rare earth magnet powder is covered with a layer being rich in the content of one or two of Dy and Tb and having a thickness of 0.05 to 50 μm.
摘要:
A hot press molded body or an HIP molded body having one of a composition comprisingR: 10-20 atomic %, B: 3-20 atomic %, anda total amount of one or a plurality of Ga, Zr, and Hf: 0.001-5.0 atomic %,a remainder comprising Fe and unavoidable impurities; ora composition comprisingR: 10-20 atomic %, B: 3-20 atomic %, anda total amount of one or a plurality of Ti, V, Nb, Ta, Al, and Si: 0.001-5.0 atomic %,a remainder comprising Fe and unavoidable impurities; ora composition comprising Co: 0.1-50 atomic % added to one of the above compositions, havingan aggregate structure of crystallized grains having as a main phase thereof a R.sub.2 Fe.sub.14 B type or R.sub.2 (Fe, Co).sub.14 B type intermetallic compound having a tetragonal structure, the crystallized grains having dimensions of 0.05-20 .mu.m; andindividual crystallized grains comprising more than 50 volume % of the total crystallized grains comprising the aggregate structure, have a value of less than 2 of a ratio b/a of a smallest grain diameter a and a largest grain diameter b.
摘要:
In a rare earth-iron-boron alloy magnet powder, each individual particle includes a recrystallized grain structure containing a R.sub.2 Fe.sub.14 B intermetallic compound phase as a principal phase thereof, wherein R represents a rare earth element. The intermetallic compound phase are formed of recrystallized grains of a tetragonal crystal structure having an average crystal grain size of 0.05 .mu.m to 50 .mu.m. For producing the above magnet powder, a rear earth-iron-boron alloy material is first prepared. Then, hydrogen is occluded inot the alloy material by holding the material at a temperature of 500.degree. C. to 1,000.degree. C. either in an atmosphere of hydrogen gas or in an atmosphere of hydrogen and inert gases. Subsequently, the alloy material is subjected to dehydrogenation at a temperature of 500.degree. C. to 1,000.degree. C. until the pressure of hydrogen in the atmosphere is decreased to no greater than 1.times.10.sup.-1 torr, and is subjected to cooling.
摘要:
A polypropylene resin and a polypropylene resin composition are provided, which have excellent fluidity and foaming properties, and particularly in use for foam injection molding, allow molding with a narrow initial cavity clearance even if a large mold is used, and therefore can provide a thin, large-area foam-injection-molded article having good appearance. The invention relates to a polypropylene resin obtained by melt mixing a linear polypropylene resin, a radical polymerization initiator and a conjugated diene compound, wherein the polypropylene resin has a melt flow rate of more than 30 g/10 min and not more than 250 g/10 min as measured at 230° C. under a load of 2.16 kg; a melt tension at 200° C. of not less than 0.3 cN; and a loss tangent (tan δ) of not more than 6.0, the loss tangent being a ratio of loss modulus to storage modulus at an angular frequency of 1 rad/s in dynamic viscoelasticity measurement at 200° C., and also relates to a polypropylene resin composition for foam injection molding, containing the polypropylene resin.
摘要:
Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
摘要:
A polypropylene resin and a polypropylene resin composition are provided, which have excellent fluidity and foaming properties, and particularly in use for foam injection molding, allow molding with a narrow initial cavity clearance even if a large mold is used, and therefore can provide a thin, large-area foam-injection-molded article having good appearance. The invention relates to a polypropylene resin obtained by melt mixing a linear polypropylene resin, a radical polymerization initiator and a conjugated diene compound, wherein the polypropylene resin has a melt flow rate of more than 30 g/10 min and not more than 250 g/10 min as measured at 230° C. under a load of 2.16 kg; a melt tension at 200° C. of not less than 0.3 cN; and a loss tangent (tan δ) of not more than 6.0, the loss tangent being a ratio of loss modulus to storage modulus at an angular frequency of 1 rad/s in dynamic viscoelasticity measurement at 200° C., and also relates to a polypropylene resin composition for foam injection molding, containing the polypropylene resin.
摘要:
The invention provides an Fe—Ni—Mo soft magnetic flaky powder having a component composition of, in percent by mass, Ni: 60 to 90%, Mo: 0.05 to 1.95%, and the balance of Fe and unavoidable impurities, and a flat surface of an average particle size of 30 to 150 μm, and an aspect ratio (average particle size /average thickness) of 5 to 500; and having a peak intensity ratio I200/I111 within a range between 0.43 and 10, where I200 is the peak height of the face index (200) and I111 is the peak height of the face index (111), in an X-ray diffraction pattern measured in such a manner that the plane including the X-ray incident direction and the diffraction direction is perpendicular to the flat surface of the soft magnetic flaky powder, and the angle between the incident direction and the flat surface is equal to the angle between the diffraction direction and the flat surface. Furthermore, the invention provides a soft magnetic flaky powder with oxide layer wherein an oxide layer of a thickness of 50 to 1000 Å is formed on the surface of this soft magnetic flaky powder.
摘要:
A rare earth magnet powder has a chemical composition which includes R: 5 to 20% (wherein, R represents one or two or more rare earth elements being inclusive of Y but exclusive of Dy and Tb), one or two of Dy and Tb: 0.01 to 10%, and B: 3 to 20%, with the balance comprising Fe and inevitable impurities; and an average particle diameter of 10 to 1,000 μm, wherein 70% or more of the entire surface of the rare earth magnet powder is covered with a layer being rich in the content of one or two of Dy and Tb and having a thickness of 0.05 to 50 μm.