摘要:
A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10−12 to 1×10−1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
摘要:
An object of the present invention is to provide a composite soft magnetic sintered material that has high density, high mechanical strength and high relative magnetic permeability at high frequencies and, in order to achieve this object, the present invention provides a method of producing the composite soft magnetic sintered material, which comprises mixing a composite soft magnetic powder, that consists of iron powder, Fe—Si based soft magnetic iron alloy powder, Fe—Al based soft magnetic iron alloy powder, Fe—Si—Al based soft magnetic iron alloy powder, Fe—Cr based soft magnetic iron alloy powder or nickel-based soft magnetic alloy powder (hereinafter these powders are referred to as soft magnetic metal powder) of which particles arc coated with a ferrite layer which has a spinel structure, with 0.05 to 1.0% by weight of silicon dioxide powder having a mean powder particle size of 100 nm or less and sintering the mixed powder after compression molding, or processing two or more kinds of the composite soft magnetic powders, of which particles are coated with ferrite layer having a spinel structure of a different compositions, by compression molding and sintering.
摘要:
A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10−12 to 1×10−1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.
摘要:
When a mail is shared, it is necessary to store data of the mail to be shared in a storage device on a server. Recently, however, an attachment file having large capacity like image data has been increasingly used, and a method for storing mail data in a storage device of a server involves a problem of large capacity loads. To solve such problem, an electronic mail system which sends and receives an e-mail between a first terminal device and a second terminal device transmits to the second terminal device link information about a shared mail which is an e-mail designated to be shared out of e-mails stored in the above-stated first terminal device, and if transmission of the shared mail is requested by using the link information from the second terminal device, the first terminal device transmits the shared mail to the second terminal device.
摘要:
The present invention provides sintered rare earth metal-boron-iron alloy magnets having superior anti-corrosion properties in which the magnetic properties do not deteriorate with time obtained by adding at least one oxide powder chosen from the group including Al, Ga, Ni, Co, Mn, Cr, Ti, V, Nb, Y, Ho, Er, Tm, Lu, as well as Eu, as well as at least one hydride powder chosen from the group including Zr, Ta, Ti, Nb, V. Hf, and Y in an amount totalling from 0.0005 to 3.0 weight % to a R-B-Fe alloy powder; molding; sintering; and then carrying out heat treatment as necessary.
摘要:
Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.