摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
A rare earth magnet powder has a chemical composition which includes R: 5 to 20% (wherein, R represents one or two or more rare earth elements being inclusive of Y but exclusive of Dy and Tb), one or two of Dy and Tb: 0.01 to 10%, and B: 3 to 20%, with the balance comprising Fe and inevitable impurities; and an average particle diameter of 10 to 1,000 μm, wherein 70% or more of the entire surface of the rare earth magnet powder is covered with a layer being rich in the content of one or two of Dy and Tb and having a thickness of 0.05 to 50 μm.
摘要:
A rare earth magnet powder has a chemical composition which includes R: 5 to 20% (wherein, R represents one or two or more rare earth elements being inclusive of Y but exclusive of Dy and Tb), one or two of Dy and Tb: 0.01 to 10%, and B: 3 to 20%, with the balance comprising Fe and inevitable impurities; and an average particle diameter of 10 to 1,000 μm, wherein 70% or more of the entire surface of the rare earth magnet powder is covered with a layer being rich in the content of one or two of Dy and Tb and having a thickness of 0.05 to 50 μm.
摘要:
A rare earth magnet includes rare earth magnet particles; and amorphous and/or crystalline terbium oxide present at the boundary of the rare earth magnet particles and represented by the formula: TbOn, wherein 1.5
摘要:
A rare earth magnet includes rare earth magnet particles; and amorphous and/or crystalline terbium oxide present at the boundary of the rare earth magnet particles and represented by the formula: TbOn, wherein 1.5
摘要:
A rare earth magnet has a sintered body including: rare earth magnet particles; and a rare earth oxide being present between the rare earth magnet particles, the rare earth oxide being represented by a following general formula (I): R2O3 (I) where R is any one of terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The rare earth magnet particle is constituted by a cluster of numerous crystal grains, and an electric resistivity of the rare earth magnet is within a range from 26.0 to 75.0 μΩm.
摘要:
A Nd—Fe—B type anisotropic exchange spring magnet is produced by a method of obtaining powder of a Nd—Fe—B type rare earth magnet alloy which comprises hard magnetic phases and soft magnetic phases wherein a minimum width of the soft magnetic phases is smaller than or equal to 1 μm and a minimum distance between the soft magnetic phases is greater than or equal to 0.1 μm, obtaining a compressed powder body by compressing the powder, and obtaining the Nd—Fe—B type anisotropic exchange spring magnet by sintering the compressed powder body using a discharge plasma sintering unit.