Abstract:
The application relates to a communication device, e.g. a speakerphone, comprising a microphone signal path, MSP, and a loudspeaker signal path, SSP, the microphone signal path comprising a microphone unit, an MSP-filter, and a transmitter unit operationally connected to each other and configured to transmit a processed signal originating from an input sound picked up by the microphone, the loudspeaker signal path comprising a receiver unit, an SSP-filter, and a loudspeaker unit operationally connected to each other and configured to provide an acoustic sound signal originating from a signal received by the receiver unit. The communication device comprises a control unit for dynamically controlling the filtering characteristics of the MSP and SSP-filters based on one or more control input signals. This has the advantage of providing a simple and flexible scheme for decreasing echo in a communication device, while ensuring an acceptable sound quality in the transmitted signal.
Abstract:
The application relates to a loudspeaker system including an input unit providing an electric input audio signal; an equalization unit for modifying said electric input audio signal in dependence on frequency and to provide an equalized electric audio signal according to a predefined equalization function, a loudspeaker unit for converting said equalized electric audio signal to an acoustic output sound signal, and a user interface for modifying a volume level of said output sound signal in a multitude (N) of steps V0, V1, . . . , VN. The application further relates to a method communication device comprising the loudspeaker system and to its use. The present application provides an improved loudspeaker system in which the equalization unit is configured to apply a specific equalization function EQ0, EQ1, . . . , EQN to the electric input audio signal in each of said multitude of steps V0, V1, . . . , VN of the volume level.
Abstract:
An audio processing device comprises a multitude of electric input signals, each electric input signal being provided in a digitized form, and a control unit receiving said digitized electric input signals and providing a resulting enhanced signal. The control unit is configured to determine the resulting enhanced signal from said digitized electric input signals, or signals derived therefrom, according to a predefined scheme.
Abstract:
A microphone boom is provided with extendable microphone arrays, and a headset having such a microphone boom. The headset comprise a casing accommodating the signal transmission circuitry and further comprises a speaker adapted to serve a sound signal at the proximity of a users ear and the speaker is protruding from the casing at a speaker-end of the casing and one microphone array is fixated relative to the casing distally with respect to the speaker-end.
Abstract:
The invention relates to an adaptive filter unit, in particular for being used as an echo canceller, comprising a first filter input, configured to receive a first electric audio signal, indicative of a first audio signal A(t), a second filter input, configured to receive a second electric audio signal, indicative of a second audio signal B(t), a processor and a filter output. The processor is configured to calculate and provide audio estimation data X(fn, A(t1, . . . , tM(fn))) in the frequency domain; to calculate a transformed second audio signal Y(fn, B(t)), formed by a transformation of the second audio signal B(t) into the frequency domain; and to calculate a filtered audio signal by subtracting delayed audio estimation data from the transformed second audio signal, wherein the delayed audio estimation data is provided by a memory unit of the adaptive filter unit, which is arranged to provide a data exchange with the processor, and wherein the delayed audio estimation data comprises a frequency dependent time delay compared to the transformed second audio signal.