Abstract:
A set of electrophotographic toners used for electrophotographic machines are disclosed which comprise an initial supply toner and a supplementary toner, both of which are composed of toner powder and additives adhering to the surface of the toner powder, wherein the weight ratio x of additives to toner powder in the initial supply toner is set to be greater than the weight ratio y of additives to toner powder in the supplementary toner.
Abstract:
A display apparatus including a plurality of pixel electrodes arranged in a matrix on a first substrate; a scanning line for sending a signal to the plurality of pixel electrodes for driving the plurality of pixel electrodes; a switching device for receiving the signal from the scanning line and switching each of the plurality of pixel electrodes into one of a conductive state and a non-conductive state in accordance with the signal; a counter electrode on a second substrate opposed to the first substrate; and a display medium layer sandwiched between the first substrate and the second substrate. The switching device includes a two-terminal element having a first electrode which is a part of the scanning line; the zinc sulfide layer on the first electrode, said zinc sulfide layer having an I-V characteristic expressed by a continuous curve; and a second electrode located on the zinc sulfide layer and electrically connected to the pixel electrode.
Abstract:
A display apparatus including a plurality of pixel electrodes arranged in a matrix on a first substrate; a scanning line for sending a signal to the plurality of pixel electrodes for driving the plurality of pixel electrodes; a switching device for receiving the signal from the scanning line and switching each of the plurality of pixel electrodes into one of a conductive state and a non-conductive state in accordance with the signal; a counter electrode on a second substrate opposed to the first substrate; and a display medium layer sandwiched between the first substrate and the second substrate. The switching device includes a two-terminal element having a first electrode which is a part of the scanning line; the zinc sulfide layer on the first electrode, said zinc sulfide layer having an I-V characteristic expressed by a continuous curve; and a second electrode located on the zinc sulfide layer and electrically connected to the pixel electrode.
Abstract:
A nonlinear device of the present invention includes: a first electrode and a second electrode at least partially opposing each other; and a nonlinear resistant layer made of a material mainly containing zinc sulfide, formed so as to be in contact with the first electrode and the second electrode, wherein at least one of the first electrode and the second electrode is made of an electrode material satisfying a relationship .DELTA.G.sub.M -.DELTA.G.sub.Zn >0, where .DELTA.G.sub.M is standard free energy of a generation reaction of a sulfide of the electrode material and .DELTA.G.sub.Zn is standard free energy of a generation reaction of a sulfide of zinc.
Abstract:
A two-terminal non-linear resistive device including a first electrode, a second electrode, and a zinc sulfide layer interposed therebetween. The zinc sulfide layer contains at least one transition metal element as an impurity. The zinc sulfide layer is formed by sputtering using a sintered ZnS target including the transition metal element or a sintered ZnS target including the transition metal sulfide.
Abstract:
An improved ZnS blue light emitting device is formed with a low-resistivity ZnS layer serving as a luminescent layer, a high-resistivity insulating layer of multi-layer structure for hole carrying injection above the low-resistivity ZnS layer and an electrode on the high-resistivity insulating layer. The high-resistivity insulating layer includes at least two stacked layers of different insulator materials serving different functions.
Abstract:
A reflection type display according to the present invention, which has a first substrate, a second substrate and a display medium interposed therebetween, includes: pixel electrodes arranged in rows and columns on the first substrate; canning lines each disposed adjacent to a respective one column of the pixel electrodes on the first substrate; a plurality of nonlinear resistance two terminal devices for electrically connecting each scanning line to the pixel electrodes of the respective one column; and signal lines disposed on the second substrate to cross the scanning lines. Each pixel electrode includes first and second metal layers and is insulated from the respective one of the scanning lines by an insulating layer. The materials of the first and second metal layers are different, and the material for the first metal layer has the reflectance higher than that of the material of the second metal layer. Each nonlinear resistance two terminal device includes a pair of electrodes and a nonlinear resistance layer provided between each pixel electrode and the insulating layer, one of the electrodes being a portion of the respective one of the scanning lines while the other is the second metal layer, the nonlinear resistance layer being in contact with the electrodes through a through hole provided in the insulating layer.
Abstract:
A method for the growth of a compound semiconductor crystal using the sublimation method or the halogen transportation method, comprising maintaining the temperature of a limited portion of the crystal, which has just begun to grow, at a higher level than that of the crystal growth temperature, thereby attaining control of the crystallinity of the crystal at the initial growth stage, and an apparatus for the said method.
Abstract:
The display apparatus of this invention includes: a display medium having an electro-optic characteristic; a pair of substrates arranged to face each other sandwiching the display medium; a pair of electrodes disposed in inner surfaces of the pair of substrates for applying a voltage to the display medium; and at least one nonlinear element including a nonlinear resistance layer composed of a sulfide film obtained by immersing a conductive or semiconductive film in a solution containing sulfur ions or ions having sulfur atoms and applying a voltage between the conductive or semiconductive film as an anode and a cathode, the nonlinear element being disposed on the inner surface of one of the pair of substrates and electrically connected to one of the pair of electrodes.
Abstract:
A color electroluminescence display panel includes a substrate, a plurality of first and second electrodes disposed orthogonal to each other on the substrate, a luminescence layer interposed between the first and second electrodes, and insulating layers interposed between the electrodes and the luminescence layer, the luminescence layer having a plurality of luminescence layer groups each including a plurality of layer portions of different color luminescence, the first electrodes having a plurality of electrode groups corresponding in number to the luminescence layer groups, each first electrode group including a plurality of electrodes corresponding to the plural layer portions, the electrode groups alternately extending to opposite end portions of the substrate, and the extending end portions of the first electrode and the second electrode being supplied with a luminescence signal therebetween.