摘要:
A wavelength-varying multi-wavelength optical filter laser using a single pump light source is disclosed. The laser comprises a wavelength-division multiplexing coupler for applying an output from a single pump light source, a first multi-branch optical fiber coupler for branching the light from the single pump light source into a plurality of optical paths, an erbium-doped fiber located at each of optical paths, wavelength-varying optical filters located at rear of each erbium-doped fiber in each optical paths, said wavelength-varying optical filters for generating laser outputs of different wavelengths in each optical paths, optical isolators located between the erbium-doped fiber and the wavelength-varying optical filter in each optical paths, said optical isolators for reducing interference between laser outputs to be stable, optic attenuators located at rear of the wavelength-varying optical filter in each optical paths, said attenuators for regulating a mode beating between laser outputs of different wavelengths, thereby causing the multi-wavelength laser oscillation to be possible, a second multi-branch optical fiber coupler for coupling branched-optical paths, and a variable optical fiber coupler located at rear of the second multi-branch optical fiber, said variable optical fiber coupler for regulates a coupling ratio of the second variable optical fiber coupler, thereby making the output thereof to be maximum.
摘要:
A multichannel light source wavelength and strength stabilizing apparatus and a method thereof are disclosed. The apparatus includes a first proportional/integrator for receiving an output signal from the error detector, detecting a value proportional thereto, integrating the detected proportional value, generating a signal corresponding to the optimum feedback circuit, and outputting to the temperature controller; a current controller for providing the current capable of controlling the light strength in accordance with the signal inputted to the light source and stabilizing the light strength; a second optical coupling unit for dividing the output signal from the first optical coupling unit; a photodetector for converting the strength of a light among the output signals from the second optical coupling unit into an electrical signal; and a second proportional/integration unit for detecting a proportional value of the output signal from the optical detector, integrating the detected proportional value, generating a signal corresponding to the optimum feedback circuit, and outputting to the current controller.
摘要:
A wavelength aligning apparatus using an arrayed waveguide grating (AWG), and particularly, to a wavelength aligning apparatus using an arrayed waveguide grating which is capable of aligning optical sources using a transmission characteristic of an arrayed waveguide grating in a wavelength alignment method. The apparatus includes a signal generator for applying a signal spaced-apart at a predetermined interval near a predetermined frequency to a bias current of the light source and dithering a central wavelength of each light source, an arrayed waveguide grating for providing a reference wavelength causing a variation difference from the central portion due to a dithering of the central wavelength, a temperature controller for determining a reference wave length by constantly maintaining a temperature of the arrayed waveguide grating, an optical fiber coupler disposed in an output terminal of the arrayed waveguide grating for dividing the signal into a transmission signal and an incoming signal, a plurality of locking amplifiers and a proportional/integration/differentiating unit for computing a bias current corresponding to the detected error signal, and a superposing unit for superposing the computed bias current and a signal from the signal generator for output to the laser diode driver.
摘要:
A measurement of nonlinear refractive index coefficient of an optical fiber with a Sagnac interferometer, comprises the steps of employing the optical fiber in a Sagnac interferometer, splitting a signal beam into two signals, launching the two split signals into the interferometer in opposite directions, combining and detecting the signals counter-propagated in the interferometer, and detecting the refractive index coefficient of the optical fiber in accordance with the difference between the two signal powers determined by a control beam. The quasi-static phase shift of the signal beam counter-propagating the same paths of the interferometer is induced by rotating the optical fiber loop of the interferometer. The present invention gives rise to little error because it does not require precise information about the pulse width of a used beam or a high-power light.
摘要:
A hybrid type passively and actively mode-locked laser scheme is disclosed, in which not only the capability of producing ultra-short optical pulses by the conventional passively mode-locked optical fiber laser scheme is utilized, but also the repetition rate variation capability and the optical pulse synchronization capability of the conventional actively mode-locked laser scheme are utilized. Consequently, all the advantages of the two conventional laser schemes are obtained in the present invention. Specifically, two loops are coupled together, and one of the two loops consists of a non-linear amplifying loop of the existing passively mode-locked scheme, while the other loop includes an optical modulator and an optical gain medium for the loop to perform the function of an actively mode-locked scheme. Further the other loop includes a time delay line so as to adjust the laser oscillation repetition rate. The ultra-short optical pulses of the present invention will be applied to high speed time division multiplexed optical communication system, high speed optical signal processors, and ultrafast optical phenomenon studies.
摘要:
An all-optical signal processing apparatus of a non-linear fiber loop mirror type comprises a very high-speed all-optical switch that can be used as a reverse multiplexed switch in a high-speed time division optical communication. The apparatus includes a non-linear loop mirror for switching signal light by adjusting light using the non-linear effect of an optical fiber and the characteristics of a sagnac interferometer as the fundamental configuration. The all-optical switch is constructed so that another adjustment light having an appropriate time delay with respect to an existing adjusting light is additionally introduced in order to compensate for the limitation on the switching bandwidth imposed by the walk-off between adjusting and signal lights in a conventional non-linear optical fiber loop mirror. This compensates for the cross-talk of the noise signals due to DC components generated in the conventional apparatus. A switching window of a desirable size is obtained by properly adjusting the time delay between two adjusting lights and resolving the bandwidth limitation of the switch due to the walk-off of the adjusting and signal lights according to the timing jitter of signal light.
摘要:
The present application describes methods and systems that improve the optical signal to noise ratio performance of an optical network without the need to vary the free spectral range associated with a differential interferometer. This is achieved by varying an electrical bandwidth of an electronic device associated with the receiver. For example, the electrical bandwidth may vary in inverse proportion to the combined effective optical bandwidth of the transmission line carrying the optical signal. The techniques described herein a applicable to a wide variety of modulation formats, including mPSK, DPSK, DmPSK, PDmPSK, mQAM, ODB, and other direct-detection formats. Using the techniques described herein, the optical signal to noise ratio and bit error ratio performance of the optical network is improved without the need to provide costly and complex differential interferometers whose free spectral range is variable.
摘要:
An optical communications system includes a plurality of optical fiber spans. An optical loss of one of the plurality of optical fiber spans is different from an optical loss of another one of the plurality of optical fiber spans. At least one of the plurality of optical fiber spans includes an optical loss that is greater than or equal to 35 dB and at least one of the plurality of optical fiber spans includes an optical loss that is less than 30 dB. An optical amplification system includes at least one discrete optical amplifier, at least one distributed optical amplifier, and an optical loss element. The optical amplification system has spectral gain that compensates for substantially all losses experienced by the optical signals propagating in the plurality of optical fiber spans.