Abstract:
A plasma display panel includes a first electrode sheet and a second electrode sheet. Each sheet includes inside lines extending in one direction, each inside line having a discharge electrode forming a closed curve discharge unit and being separated from and electrically connected to an adjacent closed curve discharge unit by a first connection unit. The discharge electrode is of a material subject to an anodization such that anodization forms a dielectric layer having an anodization thickness to an outside of the closed curve discharge unit larger than an anodization thickness to an inside of the closed curve discharge unit, the inside of the closed curve discharge unit forming a sheet discharge hole.
Abstract:
A plasma display device that enables a reduction of costs in implementing a touch panel function using infrared rays generated when displaying an image, which are emitted in a substantially uniform dispersion from a display area. One embodiment includes a plasma display panel (PDP) for displaying the image and a pair of infrared sensor cameras at two corners of the PDP. The infrared sensor cameras are either on the front or rear side of the PDP, and are utilized to detect changes in the amount of infrared rays emitted from the PDP. A controller determines a position where the amount of infrared rays is changed, which corresponds to a touch position, and transmits a detection signal indicating the location of the change in the amount of infrared rays. The infrared sensor camera has a lens with a view angle in the range of 90° to 180°.
Abstract:
A field emission panel is provided. The field emission panel includes a first substrate and a second substrate, a sealing member and a plurality of spaces which are disposed between the first substrate and the second substrate, a plurality of concave portions which are formed on a surface of the first substrate, a plurality of cathode electrodes which are disposed within each of the plurality of concave portions, a plurality of field emission materials which are disposed on each of the cathode electrodes, a plurality of gate electrodes which are fixed to areas of the surface of the first substrate which separate the concave portions of the first substrate with a gap therebetween, a light emission unit which is disposed on the second substrate, and a charging prevention resistance unit which is disposed on the first substrate, on a gap between a pair of gate electrodes.
Abstract:
A plasma display device that enables a reduction of costs in implementing a touch panel function using infrared rays generated when displaying an image, which are emitted in a substantially uniform dispersion from a display area. One embodiment includes a plasma display panel (PDP) for displaying the image and a pair of infrared sensor cameras at two corners of the PDP. The infrared sensor cameras are either on the front or rear side of the PDP, and are utilized to detect changes in the amount of infrared rays emitted from the PDP. A controller determines a position where the amount of infrared rays is changed, which corresponds to a touch position, and transmits a detection signal indicating the location of the change in the amount of infrared rays. The infrared sensor camera has a lens with a view angle in the range of 90° to 180°.
Abstract:
A plasma display panel including: a first substrate; a plurality of first electrodes and a plurality of second electrodes, the first and second electrodes being disposed in parallel on the first substrate; a first dielectric surrounding the first electrodes and the second electrodes and connecting the first electrodes and the second electrodes; a passivation layer on the first dielectric and on the first electrodes and the second electrodes; a second substrate facing the first substrate; a plurality of third electrodes on the second substrate and crossing the first electrodes and the second electrodes; and a second dielectric on the third electrodes.
Abstract:
A field emission panel is provided. The field emission panel includes a first substrate and a second substrate, a sealing member and a plurality of spaces which are disposed between the first substrate and the second substrate, a plurality of concave portions which are formed on a surface of the first substrate, a plurality of cathode electrodes which are disposed within each of the plurality of concave portions, a plurality of field emission materials which are disposed on each of the cathode electrodes, a plurality of gate electrodes which are fixed to areas of the surface of the first substrate which separate the concave portions of the first substrate with a gap therebetween, a light emission unit which is disposed on the second substrate, and a charging prevention resistance unit which is disposed on the first substrate, on a gap between a pair of gate electrodes.
Abstract:
A display device has a display panel generating visible light and generating infrared rays; a plurality of detectors detecting a change in an intensity of the infrared rays generated by the display panel; and the plurality of detectors recognizing a touch applied to the display panel in dependence upon the change detected in the intensity of the infrared rays.
Abstract:
A PDP includes a first substrate and a second substrate overlapping each other, the first and second substrates being sealed to each other along a sealing line, the sealing line being in peripheral portions of the first and second substrates, a metal layer along the sealing line on at least one of the first and second substrates, the metal layer being between the first and second substrates, and a frit layer on the metal layer.
Abstract:
An electrode sheet for a plasma display panel and a plasma display panel utilizing the same. The electrode sheet for the plasma display panel includes: a dielectric layer having a first surface and a second surface and including a discharge hole for providing a side wall of a discharge space, the dielectric layer being composed of metal oxide (MxOy); and a discharge electrode including a discharge unit around a perimeter of the discharge hole and a connection unit for connecting the discharge unit and another discharge unit to each other, the discharge electrode being within the dielectric layer and composed of metal (M) of the metal oxide (MxOy). Here, the discharge unit of the discharge electrode is within the dielectric layer such that the first surface of the dielectric layer has an area differing from that of the second surface of the dielectric layer.
Abstract translation:一种用于等离子体显示面板的电极片和使用其的等离子体显示面板。 用于等离子体显示面板的电极板包括:介电层,具有第一表面和第二表面,并且包括用于提供放电空间的侧壁的放电孔,所述电介质层由金属氧化物(M x O y)构成; 以及包括排出孔周围的排出单元的放电电极和用于将放电单元和另一个放电单元彼此连接的连接单元,放电电极位于电介质层内并由金属(M)构成 氧化物(MxOy)。 这里,放电电极的放电单元在电介质层内,使得电介质层的第一表面具有与电介质层的第二表面不同的面积。