Abstract:
A broadband light source includes a first electrodeless lamp to generate first broadband light from plasma, a first elliptical reflector having first and second focuses, the first elliptical reflector enclosing a rear portion of the first electrodeless lamp positioned at the first focus of the first elliptical reflector such that the first broadband light is reflected from the first elliptical reflector toward a light collector as a collective light, a symmetrically curved reflector having a third focus, the symmetrically curved reflector positioned such that the third focus is coincident with one of the first and second focuses, and a laser irradiator to provide a laser beam to the first electrodeless lamp.
Abstract:
An overlay measuring method includes irradiating an electron beam onto a sample, including a multi-layered structure of overlapped upper and lower patterns formed thereon, to obtain an actual image of the upper and lower patterns. A first image representing the upper pattern and a second image representing the lower pattern are obtained from the actual image. A reference position for the upper and lower patterns is determined from a design image of the upper and lower patterns. A position deviation of the upper pattern with respect to the reference position in the first image and a position deviation of the lower pattern with respect to the reference position in the second image are calculated to determine an overlay between the upper pattern and the lower pattern.
Abstract:
The present invention relates to an apparatus for puncturing a maxillary sinus, the apparatus including: a main body gripped by an operator; a probing unit detachable from the main body and configured to detect a posterior fontanelle; a surgical procedure tube which is provided in the main body and formed of an endoscope unit configured to monitor the posterior fontanelle, a puncturing unit configured to puncture the posterior fontanelle, and an irrigation tube configured to irrigate the maxillary sinus through a punctured portion of the posterior fontanelle; and an operation unit provided in the main body and configured to operate the surgical procedure tube.
Abstract:
The present invention relates to an apparatus for puncturing a maxillary sinus, the apparatus including a main body gripped by an operator and having a puncturing tube, an ultrasonic probing unit disposed in the main body and configured to detect a posterior fontanel without bones along a direction from a middle meatus to a maxillary sinus, a puncturing unit disposed in the main body, and having a needle disposed at a front end of the puncturing tube and configured to cauterize the posterior fontanel using electricity and puncture the posterior fontanel and a cautery wire configured to pass through the puncturing tube and supply electricity to the needle, an operation unit disposed in the main body and configured to move the puncturing unit toward the posterior fontanel, and an irrigation tube disposed to be fitted to the cautery wire in the puncturing tube and installed at the posterior fontanel punctured by the needle.
Abstract:
Example embodiments relate to an apparatus and method for inspecting a substrate defect. The substrate defect inspecting apparatus includes a substrate, a light source emitting an infrared beam to the substrate, a detector detecting the infrared beam reflected from the substrate, and a defect analyzer receiving first information and second information from the detector and analyzing defects existing in the substrate. According to at least one example embodiment, the second information is acquired during a later process than the first information.
Abstract:
An overlay measuring method includes irradiating an electron beam onto a sample, including a multi-layered structure of overlapped upper and lower patterns formed thereon, to obtain an actual image of the upper and lower patterns. A first image representing the upper pattern and a second image representing the lower pattern are obtained from the actual image. A reference position for the upper and lower patterns is determined from a design image of the upper and lower patterns. A position deviation of the upper pattern with respect to the reference position in the first image and a position deviation of the lower pattern with respect to the reference position in the second image are calculated to determine an overlay between the upper pattern and the lower pattern.
Abstract:
There is provided an air purifier having a dehumidification function, including: a body case having an inner space; a blower part installed in the inner space of the body case and drawing outside air from both sides of the body case through a single blower fan; an air purifying part purifying air drawn from one side of the body case; and a dehumidifying part removing moisture from air drawn from the other side of the body case by a dehumidifying rotor. Through the blower part drawing the air from both sides of the body case, the air purifier purifies the air drawn from one side of the body case and dehumidifies the air drawn from the other side of the body case. Accordingly, a drop in an airflow amount caused by concurrently performing the dehumidification and the purification may be alleviated, so improved dehumidification and purification effects are achieved.
Abstract:
There is provided an air purifier having a dehumidification function, including: a body case having an inner space; a blower part installed in the inner space of the body case and drawing outside air from both sides of the body case through a single blower fan; an air purifying part purifying air drawn from one side of the body case; and a dehumidifying part removing moisture from air drawn from the other side of the body case by a dehumidifying rotor. Through the blower part drawing the air from both sides of the body case, the air purifier purifies the air drawn from one side of the body case and dehumidifies the air drawn from the other side of the body case. Accordingly, a drop in an airflow amount caused by concurrently performing the dehumidification and the purification may be alleviated, so improved dehumidification and purification effects are achieved.
Abstract:
The present invention relates to an apparatus for puncturing a maxillary sinus, the apparatus including: a main body gripped by an operator; a probing unit detachable from the main body and configured to detect a posterior fontanelle; a surgical procedure tube which is provided in the main body and formed of an endoscope unit configured to monitor the posterior fontanelle, a puncturing unit configured to puncture the posterior fontanelle, and an irrigation tube configured to irrigate the maxillary sinus through a punctured portion of the posterior fontanelle; and an operation unit provided in the main body and configured to operate the surgical procedure tube.
Abstract:
Example embodiments relate to an apparatus and method for inspecting a substrate defect. The substrate defect inspecting apparatus includes a substrate, a light source emitting an infrared beam to the substrate, a detector detecting the infrared beam reflected from the substrate, and a defect analyzer receiving first information and second information from the detector and analyzing defects existing in the substrate. According to at least one example embodiment, the second information is acquired during a later process than the first information.