摘要:
A dielectric paste composition including: a plurality of inorganic dielectric particles, a binder, a solvent, and a halogenated hydrocarbon. Also disclosed is a method of forming a dielectric layer, a dielectric layer, and a device including the dielectric layer.
摘要:
A nanophosphor including ZnS, having an average particle diameter of about 10 to about 500 nanometers, and having a ZnS cubic (111) peak in an X-ray diffraction spectrum, wherein the ZnS cubic (111) peak has a full width at half maximum (“FWHM”) of about 0.280 degrees or less.
摘要:
A method of fabricating a field emission array type light emitting unit that includes a rear substrate including a plurality of cathodes and a plurality of carbon nanotube emitters on a front side, a front substrate including a plurality of anodes and a phosphor layer on a rear side, wherein the rear substrate and the front substrate are arranged at a distance apart from each other and a plurality of spacers are arranged between the rear substrate and the front substrate, the plurality of spacers being adapted to maintain constant the distance, the method includes producing a diffusion pattern by wet etching a front side of the front substrate.
摘要:
A field emission display and a method of manufacturing the same are provided. The field emission display includes an anode plate where an anode electrode and a fluorescent layer are formed, a cathode plate where an electron emission source emitting electrons toward the fluorescent material layer and a gate electrode having a gate hole through which the electrons travel are formed, a mesh grid having an electron control hole corresponding to the gate hole and adhered to the cathode plate, and an insulation layer formed on a surface of the mesh grid facing the cathode plate, and spacers provided between the anode plate and the mesh grid so that the mesh grid can be adhered to the cathode plate due to a negative pressure existing between the anode plate and the cathode plate.
摘要:
A field emission display and a method of manufacturing the same are provided. The field emission display includes an anode plate where an anode electrode and a fluorescent layer are formed, a cathode plate where an electron emission source emitting electrons toward the fluorescent material layer and a gate electrode having a gate hole through which the electrons travel are formed, a mesh grid having an electron control hole corresponding to the gate hole and adhered to the cathode plate, and an insulation layer formed on a surface of the mesh grid facing the cathode plate, and spacers provided between the anode plate and the mesh grid so that the mesh grid can be adhered to the cathode plate due to a negative pressure existing between the anode plate and the cathode plate.
摘要:
A method of manufacturing a phosphor layer structure including an improved process of forming a phosphor layer between barriers on an anode substrate includes: forming a substrate to have inner spaces divided by barriers; forming a sacrificial layer on the barriers and the inner spaces to planarize an upper surface of the substrate; forming a phosphor layer on the sacrificial layer; and removing the sacrificial layer, the phosphor layer remaining in the inner spaces previously occupied by the sacrificial layer.
摘要:
A method of fabricating a field emission display employing carbon nanotubes (CNTs) as electron emitters is provided. The method includes forming a cathode on a substrate; forming a gate insulation layer having a plurality of gate holes on the cathode; forming a gate electrode having a plurality of via-holes corresponding to the gate holes, respectively, on the gate insulation layer; forming a plurality of conductive columns higher than the gate electrode on the cathode within the respective gate holes; adhering the CNTs to the bottom of a plate template which is separately provided; bringing the bottom of the template having the CNTs to contact the tops of the conductive columns to adhere the CNTs to the tops of the conductive columns; and firing the conductive columns to lower the levels thereof. Accordingly, the problems of conventional methods, such as sinking of CNTs caused by screen printing, residual CNTs remaining within a gate when a lift-off method is used and short circuiting between gate and cathode due to the residual CNTs, can be solved. In addition, CNTs are applied to only a part for field emission, that is, only the top of a conductive column, thereby requiring fewer CNTs and decreasing fabrication cost. Moreover, the method uses stamping in order to form CNTs, so it is very advantageous in mass production.
摘要:
A method for forming a carbon nanotube emitter by coating a photoresist on a substrate having an electrode already formed thereon, followed by patterning to form a photoresist dot on the electrode. The substrate is covered with a carbon nanotube paste that covers the photoresist dot. The carbon nanotube emitter is formed on the electrode by interdiffusion between the photoresist dot and the carbon nanotube paste through drying, and the carbon nanotube paste covering the carbon nanotube emitter is then removed.
摘要:
A method of forming carbon nanotube emitters and a method of manufacturing an FED using such carbon nanotube emitters includes: forming a carbon nanotube layer on a substrate on which a plurality of electrodes are formed, coating a photoresist on the carbon nanotube layer, patterning the photoresist such that the photoresist only remains above the electrodes, removing an exposed portion of the carbon nanotube layer by etching using the patterned photoresist as a etch mask, and removing the photoresist pattern and forming the carbon nanotube emitters on the electrodes.