摘要:
A combustor with a burner maintains combustion stability. The burner includes an air hole member 31 with a plurality of air holes 34, 35 provided at an upstream side of the combustion gases generated by a combustion chamber 1. A first fueling nozzle 33 jets fuel in a direction crossing a central axis of the burner towards at least two of air holes 35. A plurality of second fueling nozzles 32, one for each of the remaining air holes 34, are provided to jet the fuel in a direction routed along the burner axis towards the corresponding air hole 34. A fuel header 30 distributes the fuel to the first fueling nozzle 33 and each of the second fueling nozzles 32. A fuel header storage unit 70 shrouds the fuel header 30, fueling nozzles 32, 33, and has an air inflow hole 71.
摘要:
A combustor is provided that can ensure combustion stability even when operated on low BTU gas without needing any equipment for preventing back-flow of fuel gas during operation on pilot fuel. The combustor includes a first perforated plate disposed upstream of a combustion chamber, the first plate having a plurality of nozzle holes and air holes; a second perforated plate disposed on the upstream side of the first plate; and a plurality of gas nozzles each of which is inserted into corresponding nozzle holes. The gas nozzle has a leading end located inside the corresponding one of the nozzle holes. Each of the gas nozzles includes a jet hole portion having a diameter smaller than that of a gas jet hole of the gas nozzle; and a passage portion designed to form an air passage on the outer circumference of the leading end portion of the gas nozzle.
摘要:
An object of the present invention is to provide a gas turbine combustor that supports hydrogen-containing gas having a high burning velocity and is capable of performing low NOx combustion without reducing reliability of a burner. A first fuel nozzle is provided upstream of a combustion chamber and supplies fuel for activation and hydrogen-containing gas. The combustor has a primary combustion zone, a reduction zone and a secondary combustion zone. In the primary combustion zone, the fuel supplied from the first fuel nozzle is combusted under a fuel rich condition to form a burned gas containing a low concentration of oxygen. In the reduction zone, a hydrogen-containing gas is injected into the combustion chamber through a second fuel injection hole from a second fuel nozzle so that NOx generated in the primary combustion zone is reduced by an oxygen reaction of the hydrogen. In the secondary combustion zone, air for lean combustion is supplied into the combustion chamber so that unburned part of fuel is combusted under a fuel lean condition.
摘要:
A combustor is provided that can ensure combustion stability even when operated on low BTU gas without needing any equipment for preventing back-flow of fuel gas during operation on pilot fuel. The combustor includes a first perforated plate disposed upstream of a combustion chamber, the first plate having a plurality of nozzle holes and air holes; a second perforated plate disposed on the upstream side of the first plate; and a plurality of gas nozzles each of which is inserted into corresponding nozzle holes. The gas nozzle has a leading end located inside the corresponding one of the nozzle holes. Each of the gas nozzles includes a jet hole portion having a diameter smaller than that of a gas jet hole of the gas nozzle; and a passage portion designed to form an air passage on the outer circumference of the leading end portion of the gas nozzle.
摘要:
A highly-reliable combustor is provided that allows flash back of flame into a premixer to be suppressed.The combustor has a mixing chamber forming member 110 that forms a mixing chamber thereinside. The mixing chamber includes a first mixing chamber 200 broadening toward a downstream side. The member 110 includes air introduction holes 202, 203, 204 formed in a plurality of rows in an axial direction, with the air introduction holes being arranged plurally in a circumferential direction of the mixing chamber. The member 110 includes a fuel ejection hole 206 provided in a wall surface which forms the air introduction hole. The air introduction holes 202, 203, 204 are circumferentially eccentrically installed. The air introduction holes 202 located in the most upstream row are more inclined toward the downstream side than the air introduction holes 203, 204 located in the rows other than the most upstream row.
摘要:
Provided is a carbon composite briquette which is used as the raw material of a movable hearth furnace for producing reduced iron having a sufficient carbon content and a higher crushing strength, and also provided is a method for producing reduced iron using the carbon composite briquette. The carbon composite briquette for producing reduced iron has a total SiO2+Al2O3+CaO+MgO content that is between 7 and 15 mass %; an MgO content that is between 0.1 and 6 mass %; an Al2O3/SiO2 mass ratio that is between 0.34 and 0.52; a CaO/SiO2 mass ratio that is between 0.25 and 2.0; and a C content such that between 1 and 9 mass % of C is retained in the resulting reduced iron.
摘要翻译:本发明提供一种碳复合团块,其用作生产具有足够碳含量和较高抗碎强度的还原铁的可移动炉底炉的原料,并且还提供了使用碳复合团块制造还原铁的方法。 用于生产还原铁的碳复合煤块的总SiO 2 + Al 2 O 3 + CaO + MgO含量为7〜15质量%。 0.1〜6质量%的MgO含量; Al2O3 / SiO2质量比在0.34和0.52之间; 在0.25和2.0之间的CaO / SiO 2质量比; 并且C含量使得在所得的还原铁中保留1至9质量%的C。
摘要:
An object of the present invention is to provide a gas turbine combustor that supports hydrogen-containing gas having a high burning velocity and is capable of performing low NOx combustion without reducing reliability of a burner. A first fuel nozzle is provided upstream of a combustion chamber and supplies fuel for activation and hydrogen-containing gas. The combustor has a primary combustion zone, a reduction zone and a secondary combustion zone. In the primary combustion zone, the fuel supplied from the first fuel nozzle is combusted under a fuel rich condition to form a burned gas containing a low concentration of oxygen. In the reduction zone, a hydrogen-containing gas is injected into the combustion chamber through a second fuel injection hole from a second fuel nozzle so that NOx generated in the primary combustion zone is reduced by an oxygen reaction of the hydrogen. In the secondary combustion zone, air for lean combustion is supplied into the combustion chamber so that unburned part of fuel is combusted under a fuel lean condition.
摘要:
A combustor with a burner maintains combustion stability. The burner includes an air hole member 31 with a plurality of air holes 34, 35 provided at an upstream side of the combustion gases generated by a combustion chamber 1. A first fueling nozzle 33 jets fuel in a direction crossing a central axis of the burner towards at least two of air holes 35. A plurality of second fueling nozzles 32, one for each of the remaining air holes 34, are provided to jet the fuel in a direction routed along the burner axis towards the corresponding air hole 34. A fuel header 30 distributes the fuel to the first fueling nozzle 33 and each of the second fueling nozzles 32. A fuel header storage unit 70 shrouds the fuel header 30, fueling nozzles 32, 33, and has an air inflow hole 71.
摘要:
The invention provides a projection display device capable of appropriate light control depending on the kind of the image, the ambient brightness and so on, a method for driving the same, and an illuminator used in the same. The light flux of illumination can be adjusted on the basis of image information. The allowable light control range (dimming control) can be optimally set depending on the information (usage information) on the kind of viewed content, the brightness of viewing environment, the gain of a screen and the like.
摘要:
An image display apparatus in which image signals of a plurality of primary colors are transformed by an image processing section into color space that includes lightness and chromaticity. When the chromaticity (color vividness) in this color space is being corrected, the correction method is changed in accordance with the optical modulation state of the display apparatus. If optical modulation is performed, then correction is made to lower the chromaticity, while correction is made to raise the chromaticity when there is no optical modulation.