摘要:
A power supply apparatus of the present invention has an input terminal and an output terminal, and converts an input voltage at the input terminal into a predetermined output voltage at the output terminal. The power supply apparatus includes first and second power supply circuits and a smoothing capacitor. The first power supply circuit is coupled between the input terminal and the output terminal, and converts the input voltage into a predetermined voltage to output the predetermined voltage. The smoothing capacitor is coupled to the output terminal. The second power supply circuit outputs a predetermined voltage or current to the output terminal via the smoothing capacitor, based on a feedback signal corresponding to the predetermined output voltage.
摘要:
A switching power supply device includes a first control circuit that turns a first switch on when first and second switches are off and a voltage at a junction node therebetween is increased to decrease a voltage across the first switch to a first threshold voltage, turns off when a first ON-period has elapsed from when the first switch is turned on, and lengthens the first ON-period as an output voltage decreases relative to a reference voltage; and a second control circuit that turns the second switch on when both switches are off and a voltage across the second switch is decreased to a second threshold voltage, turns off when a reverse current flows through the inductor, sufficient to increase the voltage at the junction node to decrease the voltage across the first switch to the first threshold voltage after the second switch is turned off.
摘要:
A switching power supply circuit for generating an output voltage at an output node based on an input voltage at an input node includes a reference voltage generating circuit configured to generate a reference voltage such that during an initial start-up period of the reference voltage a voltage rise rate of the reference voltage within a first predetermined period from a start point of the initial start-up period and a voltage rise rate thereof within a second predetermined period immediately preceding an end point of the initial start-up period are smaller than a voltage rise rate thereof in a period between the first predetermined period and the second predetermined period, a coil disposed between the input output nodes, and a switch circuit configured to switch on and off to control current through the coil in response to comparison between the reference voltage and a voltage proportional to the output voltage.
摘要:
In a step-down switching regulator, a switching element is a high-voltage NMOS transistor, turned on and off based on a control signal generated by a controller, and charges an inductor with an input voltage input to an input terminal. A first drive circuit is a low-voltage MOS transistor and turns on and off the switching element based on the control signal. A voltage generator generates a predetermined first power supply voltage not greater than a withstand voltage of the low-voltage MOS transistor. A capacitor is connected in parallel with the first drive circuit and stores charge from the voltage generator to supply power to the first drive circuit. One end of the capacitor is connected to a junction node between the switching element and the inductor, and the other end of the capacitor is supplied with the first power supply voltage generated by the voltage generator.
摘要:
A power supply apparatus of the present invention has an input terminal and an output terminal, and converts an input voltage at the input terminal into a predetermined output voltage at the output terminal. The power supply apparatus includes first and second power supply circuits and a smoothing capacitor. The first power supply circuit is coupled between the input terminal and the output terminal, and converts the input voltage into a predetermined voltage to output the predetermined voltage. The smoothing capacitor is coupled to the output terminal. The second power supply circuit outputs a predetermined voltage or current to the output terminal via the smoothing capacitor, based on a feedback signal corresponding to the predetermined output voltage.
摘要:
Disclosed is a current-mode control switching regulator that steps down or steps up an input voltage input to an input terminal to a predetermined constant voltage and outputs the stepped input voltage from an output terminal as an output voltage. The current-mode control switching regulator includes a switching element, an inductor, a rectifying element, an error amplification circuit unit, an oscillation circuit unit with variable oscillation frequency, a slope voltage generation circuit unit, and a switching control circuit unit.
摘要:
A control circuit for a synchronous rectification switching regulator including an output terminal, a switching transistor, an inductor, and a synchronous rectification transistor has a control part configured to control switching of the switching transistor to charge the inductor to and set a voltage output from the output terminal to a predetermined voltage, which causes the synchronous rectification transistor to switch reversely to the switching transistor and discharge the inductor, and backflow prevention part configured to block a current flowing in the synchronous rectification transistor to prevent a backflow current that flows in a direction from the output terminal to the synchronous rectification transistor. The backflow prevention part detects a forward current and regulates timing to block the current flowing in the synchronous rectification transistor and to regulate a time period from blocking the current flowing in the synchronous rectification transistor to determining that the forward current is zero.
摘要:
A control circuit for a synchronous rectification switching regulator including an output terminal, a switching transistor, an inductor, and a synchronous rectification transistor has a control part configured to control switching of the switching transistor to charge the inductor to and set a voltage output from the output terminal to a predetermined voltage, which causes the synchronous rectification transistor to switch reversely to the switching transistor and discharge the inductor, and backflow prevention part configured to block a current flowing in the synchronous rectification transistor to prevent a backflow current that flows in a direction from the output terminal to the synchronous rectification transistor. The backflow prevention part detects a forward current and regulates timing to block the current flowing in the synchronous rectification transistor and to regulate a time period from blocking the current flowing in the synchronous rectification transistor to determining that the forward current is zero.
摘要:
An isolated switching power supply circuit is compact, high-efficiency, and low noise. It includes a transformer T1 which has a primary winding wound with NP turns and a secondary winding wound with NS turns, a drive switch Q1 and an active clamp switch Q2 configuring a primary side half-bridge, a boost capacitor CBULK1 that charges a discharge energy of the transformer, rectifier diodes D1 and D2 connected in series, a tank capacitor CT1, and an output capacitor COUT1. A secondary side winding voltage, when the drive switch Q1 or the active clamp switch Q2 is on, is held in the tank capacitor CT1, and by superimposing the secondary winding voltage, when the drive switch Q1 or the active clamp switch Q2 is off, on the voltage held in the tank capacitor CT1, the configuration is such that output voltage VOUT equals boosted voltage VBULK times (NS divided by NP).
摘要:
Disclosed is a driving circuit that includes a switching element configured to be connected between an input terminal and an output node; a first power supply circuit configured to generate a first voltage; and a first driving circuit configured to drive the switching element with an output thereof using a voltage of the output node as a reference negative-side power supply voltage and the first voltage as a positive-side power supply voltage. The voltage of the output node is used as a reference negative-side power supply voltage of the first power supply.