摘要:
A method of method of making a corrosion resistant print head die comprises creating a self-ionized plasma (SIP) of a coating material; establishing a bias on a print head die comprising a plurality of feed slots (40), each feed slot (40) comprising side wall surfaces (61); and causing the coating material plasma to be deposited on the surfaces to form a protective coating, wherein at least a portion of the coating material is deposited on at least a portion of the surfaces by resputtering. In some cases, the feed slots have an aspect ratio greater than 2. In some cases, the feed slot comprises at least one rib (41), each rib (41) comprising a top surface (68), two side surfaces (66), and an under surface (69), and the formed protective coating is deposited on the top surface (68), two side surfaces (66), and under surface (69) of each rib (41).
摘要:
A fluid ejection cartridge includes a body, having fluid passageways at a first spacing, a die, having fluid passage-ways at a second closer spacing, and an interposer, bonded to the body at a first surface and plasma bonded to the die at a second surface. The interposer includes fluid passageways between the first and second surfaces, which are substantially aligned with the respective passageways of the body and the die.
摘要:
Methods and an apparatus are disclosed, wherein a print head die includes a slot and ribs across the slot. The ribs are recessed from one or both sides of the die.
摘要:
The invention includes a process for copper metallization of an integrated circuit, comprising the steps of forming tantalum on a substrate, forming tantalum nitride over the tantalum, forming titanium nitride over the tantalum nitride, forming copper over the titanium nitride and integrated circuits made thereby. The invention is particularly useful in forming damascene structures with large aspect ratios.
摘要:
The present invention provides a method of forming a metal oxide metal (MOM) capacitor on a substrate, such as a silicon substrate, of a semiconductor wafer in a rapid thermal process (RTP) machine. The MOM capacitor is fabricated by forming a metal layer on the semiconductor substrate. The metal layer is then subjected to a first rapid thermal process in a substantially inert but nitrogen-free atmosphere that consumes a portion of the metal layer to form a first metal electrode layer and a silicide layer between the first metal electrode and the semiconductor substrate. The semiconductor wafer is then subjected to a second rapid thermal process. During this process, the remaining portion of the metal layer is oxidized to form a metal oxide on the first metal electrode, which serves as the dielectric layer of the MOM capacitor. Following the formation of the dielectric layer, a second metal electrode layer is then conventionally formed on the metal oxide, which completes the formation of the MOM capacitor. Preferably, the first electrode layer and the metal oxide layer are formed in a single RTP machine.
摘要:
A print head die (30) includes slot ribs (41) having edges (62, 64) with triangular notches. In one embodiment, the print head die is formed by dry etching from a first side (50) of a wafer (30) a series of spaced openings (220) completely through the wafer (30) and separated by ribs (41) followed by wet etching the wafer (30) from a second opposite side (44) to recess the ribs (41) from the second side (44).
摘要:
A printing device (10) including a substrate (22) having an aperture (20) extending therethrough, wherein the aperture includes a side wall and defines a liquid ink flow path, an ink firing chamber (24) fluidically connected to the aperture, and a coating positioned on the side wall of the aperture, the coating being impervious to etching by liquid ink, and wherein the coating is chosen from one of silicon dioxide, aluminum oxide, hafnium oxide and silicon nitride.
摘要:
The present invention provides a method of depositing a film on a surface of a coil that includes depositing a metal from a target onto a surface of a coil to form a first film on the surface and forming a second film over the first film at a low pressure and at a first power at the target that is substantially higher than a first power at the component's surface. The conditioned deposition tool is well suited for manufacturing integrated circuits.