Abstract:
A polymer blend having excellent impact strength, even at zero moisture level, comprises the blend of 100 parts by weight of a polyamide and less than 50 parts by weight of a selectively hydrogenated monoalkenyl arene-conjugated diene block polymer.
Abstract:
A multicomponent polymer blend composition is prepared by intimately mixing a nitrile barrier resin, a selectively hydrogenated monoalkenyl arene-diene block copolymer, and at least one dissimilar engineering thermoplastic resin under such conditions that at least two of the polymers form at least partial continuous network phases which interlock with the other polymer networks and therefore results in a desirable balance of properties.
Abstract:
Polymeric blends having excellent dimensional stability and an improved balance of properties are prepared by intimately mixing certain selectively hydrogenated block copolymers with certain halogenated thermoplastics thereby forming at least partial continuous networks which interlock.
Abstract:
A multicomponent polymer blend composition is prepared by intimately mixing a polyurethane, a selectively hydrogenated monoalkenyl arene-diene block copolymer, and at least one dissimilar engineering thermoplastic resin under such conditions that at least two of the polymers form at least partial continuous network phases which interlock with the other polymer networks and therefore results in a desirable balance of properties.
Abstract:
A multicomponent polymer blend composition is prepared by intimately mixing a polyolefin, a selectively hydrogenated monoalkenyl arene-diene block copolymer, and at least one dissimilar engineering thermoplastic resin under such conditions that at least two of the polymers form at least partial continuous network phases which interlock with the other polymer networks and therefore results in a desirable balance of properties.
Abstract:
Polymeric blends having excellent dimensional stability and an improved balance of properties are prepared by intimately mixing certain selectively hydrogenated block copolymers with polymers and copolymers of 4-methyl-1-pentene under conditions where at least partial continuous networks which interlock are formed.
Abstract:
An unusual polybutene-1 polymer blend based on the ability of polybutene-1 to undergo random scission of molecules in a chemical cracking process. Such cracked polymer when blended back with the parent polybutene-1 produces a unique molecular weight distribution which is manifested in a unique and valuable combination of processing behavior and mechanical, optical and thermal properties of film made from the blend. Good hot tack, low heat sealing temperature and high clarity as well as improved processability are simultaneously achieved in these films.
Abstract:
An improved thermoforming process comprises the use of crystalline polymer sheets prepared by the peroxide reacting of the mixture of a poly(alpha olefin) selected from polypropylene and polybutylene plus a polyethylene.
Abstract:
A multicomponent polymer blend composition is prepared by intimately mixing a thermoplastic polyester, a selectively hydrogenated monoalkenyl arene-diene block copolymer, and at least one dissimilar engineering thermoplastic resin under such conditions that at least two of the polymers form at least partial continuous network phases which interlock with the other polymer networks and therefore results in a desirable balance of properties. These blends have an unobviously high heat distortion temperature relative to the improved impact strength.
Abstract:
A multicomponent polymer blend composition is prepared by intimately mixing a halogenated thermoplastic, a selectively hydrogenated monoalkenyl arene-diene block copolymer, and at least one dissimilar engineering thermoplastic resin under such conditions that at least two of the polymers form at least partial continuous network phases which interlock with the other polymer networks and therefore results in a desirable balance of properties. These blends have an unobviously high heat distortion temperature relative to the improved impact strength.