Abstract:
In a method of detecting a fault in a fluid-working machine including a plurality of working chambers of cyclically varying volume, each working chamber is operable to displace a volume of working fluid which is selectable for each cycle of working chamber volume to carry out a working function responsive to a received demand signal. An output parameter of the fluid working machine, which is responsive to the displacement of working fluid by one or more of the working chambers to carry out the working function, is measured. It is determined whether the measured output parameter fulfils at least one acceptable function criterion, taking into account the previously selected net displacement of working fluid by a working chamber during a cycle of working chamber volume to carry out the working function.
Abstract:
In a method of operating a fluid-working machine, the volume of working fluid displaced during each cycle of working chamber volume is selected taking into account the availability of other working chambers. The status of each working chamber is monitored and a working chamber treated as unavailable if it is found to be malfunctioning. A working chamber may be treated as unavailable if it is allocated to an alternative working function. A fault may be detected in a working chamber by determining whether a measured output parameter of the fluid working machine fulfills at least one acceptable function criterion taking into account the previously selected net displacement of working fluid by a working chamber during a cycle of working chamber volume to carry out the working function.
Abstract:
In a method of operating a fluid-working machine, the volume of working fluid displaced during each cycle of working chamber volume is selected taking into account the availability of other working chambers. The status of each working chamber is monitored and a working chamber treated as unavailable if it is found to be malfunctioning. A working chamber may be treated as unavailable if it is allocated to an alternative working function. A fault may be detected in a working chamber by determining whether a measured output parameter of the fluid working machine fulfils at least one acceptable function criterion taking into account the previously selected net displacement of working fluid by a working chamber during a cycle of working chamber volume to carry out the working function.
Abstract:
In a method of detecting a fault in a fluid-working machine including a plurality of working chambers of cyclically varying volume, each working chamber is operable to displace a volume of working fluid which is selectable for each cycle of working chamber volume to carry out a working function responsive to a received demand signal. An output parameter of the fluid working machine, which is responsive to the displacement of working fluid by one or more of the working chambers to carry out the working function, is measured. It is determined whether the measured output parameter fulfils at least one acceptable function criterion, taking into account the previously selected net displacement of working fluid by a working chamber during a cycle of working chamber volume to carry out the working function.
Abstract:
A fluid-working machine has a working chamber of cyclically varying volume, high and low pressure manifolds, and high and low pressure valves for regulating the flow of fluid between the working chamber and the high and low pressure manifolds respectively. A controller actively controls at least one said valve to determine the net displacement of working fluid of the working chamber on a cycle by cycle basis. At least one said valve is a variable timing valve and the controller causes the valve to open or close at a time determined taking into account one or more properties of the performance of the fluid working machine measured during an earlier cycle of working chamber volume.
Abstract:
A fluid-working machine has a working chamber of cyclically varying volume, high and low pressure manifolds, and high and low pressure valves for regulating the flow of fluid between the working chamber and the high and low pressure manifolds respectively. A controller actively controls at least one said valve to determine the net displacement of working fluid of the working chamber on a cycle by cycle basis. At least one said valve is a variable timing valve and the controller causes the valve to open or close at a time determined taking into account one or more properties of the performance of the fluid working machine measured during an earlier cycle of working chamber volume.
Abstract:
The present invention relates to a method of operating a fluid-working machine wherein the volume of working fluid displaced each cycle is selectable and wherein the volume of working fluid displaced by a first working chamber takes into account the suitability of the working chamber to displace fluid. The invention extends in further aspects to power absorbing structures such as renewable energy devices comprising such fluid working machines. The invention allows the operation of fluid working machines and power absorbing structures which are more long lived.
Abstract:
The present invention relates to a method of operating a fluid-working machine wherein the volume of working fluid displaced each cycle is selectable and wherein the volume of working fluid displaced by a first working chamber takes into account the suitability of the working chamber to displace fluid. The invention extends in further aspects to power absorbing structures such as renewable energy devices comprising such fluid working machines. The invention allows the operation of fluid working machines and power absorbing structures which are more long lived.
Abstract:
A fluid working machine comprising a controller and a working chamber, an electronically controllable low pressure valve associated therewith and a fast high pressure valve associated therewith, characterized in that the working chamber has associated therewith a slow high pressure valve for controlling the connection of the working chamber to a secondary high pressure manifold. A fluid working machine according to the invention may be operated to rotate its shaft to a certain position, for example to allow easy maintenance of a wind turbine generator.
Abstract:
An electronically actuatable valve assembly having a primary face seating valve, including a primary valve member, and a secondary valve, including a secondary valve member. The secondary valve opens before the primary valve to equilibrate pressure across the primary valve member and thereby facilitate opening of the primary valve member. The secondary valve is coupled to an armature which moves from a first position to a second position, in use, attracted by an electromagnet. The coupling between the armature and the secondary valve is configured to enable the armature to begin to move from the first position without movement of the secondary valve. The armature has therefore moved from the first position, closer to the electromagnet, when the secondary valve is opened by way of the forces exerted through the coupling between the armature and the secondary valve member, and so a greater force can be exerted to open the secondary valve than would be the case if the secondary valve member was fixedly coupled to the armature.