Abstract:
Certain aspects relate to a method and system whereby any defined system characteristic, property, or parameter can be normalized for farther improving the displayed image quality. The normalization processing can use a generalized calibration process and can normalize a system characteristic, or a system property, and/or parameter to result in a more uniform or accurately displayed image using a generalized image processing method.
Abstract:
Certain aspects relate to a method and system whereby any defined system characteristic, property, or parameter can be normalized for farther improving the displayed image quality. The normalization processing can use a generalized calibration process and can normalize a system characteristic, or a system property, and/or parameter to result in a more uniform or accurately displayed image using a generalized image processing method.
Abstract:
Methods of and equipment for converting existing standard motion picture theatres to one having highly immersive, large fields of view are addressed. Aspects of the methods including moving motion picture screens closer to the audience and employing different projection equipment to avoid or minimize appearance of unrealistic or non-natural image artefacts. Alternative sound systems too are detailed.
Abstract:
Systems and methods configured for outputting light having a polarization state distribution that is spatially uniform by applying a correction to, for example, a beam of light with a spatially uniform polarization state distribution that has been altered (unintentionally or otherwise) to become spatially non-uniform are described. A projection system can include an optical element and a polarization-altering device (PAD). The optical element can cause a polarization of light in the projection system to be spatially non-uniform. The PAD can change the polarization state distribution of the light spatially based on an amount of spatial non-uniformity on the light caused by the optical element and before the light enters the optical element. The projection system can output the light having a spatially uniform polarization state distribution.
Abstract:
Methods of and equipment for converting existing standard motion picture theatres to one having highly immersive, large fields of view are addressed. Aspects of the methods including moving motion picture screens closer to the audience and employing different projection equipment to avoid or minimize appearance of unrealistic or non-natural image artefacts. Alternative sound systems too are detailed.
Abstract:
Methods of and equipment for converting existing standard motion picture theatres to one having highly immersive, large fields of view are addressed. Aspects of the methods including moving motion picture screens closer to the audience and employing different projection equipment to avoid or minimize appearance of unrealistic or non-natural image artefacts. Alternative sound systems too are detailed.
Abstract:
Hybrid image projection systems and methods can superimpose image components of an input image. An input image can be divided into smaller regions and at least one parameter of each region can be determined. The input image can be decomposed based on the parameter of each region into multiple, less correlated, orthogonal or quasi-orthogonal image components. Each projector can display respective image components so that the images projected may be optically superimposed on a screen. The superposition of orthogonal or quasi-orthogonal image components can result in superposition of images in an existing multi-projector image systems being more insensitive to inter-projector image misalignment. Superimposing orthogonal or quasi-orthogonal images can be used to avoid visible image degradation, and provide more robust image quality in a multiple projector system implementation.
Abstract:
Hybrid image projection systems and methods can superimpose image components of an input image. An input image can be divided into smaller regions and at least one parameter of each region can be determined. The input image can be decomposed based on the parameter of each region into multiple, less correlated, orthogonal or quasi-orthogonal image components. Each projector can display respective image components so that the images projected may be optically superimposed on a screen. The superposition of orthogonal or quasi-orthogonal image components can result in superposition of images in an existing multi-projector image systems being more insensitive to inter-projector image misalignment. Superimposing orthogonal or quasi-orthogonal images can be used to avoid visible image degradation, and provide more robust image quality in a multiple projector system implementation.
Abstract:
The present invention discloses systems, equipment and methods that allow the improved tiling of multiple projections displays in order to create higher resolution images. Equipment and methods are disclosed for improved blending of the seam by optical means where edge blending masks are employed to create a brightness ramp in the blending region. Equipment and methods are also disclosed for the correction of artifacts in an optically blended seam by modifying the brightness of image pixels in the overlap or blend region. Equipment, systems, and techniques are disclosed for preserving the resolution and uniformity of the image across each seam by actively controlling the position of each display using a servo controlled lens mount for the positioning of each projected image in conjunction with a real time image analysis system.
Abstract:
The present invention discloses systems, equipment and methods that allow the improved tiling of multiple projections displays in order to create higher resolution images. Equipment and methods are disclosed for improved blending of the seam by optical means where edge blending masks are employed to create a brightness ramp in the blending region. Equipment and methods are also disclosed for the correction of artifacts in an optically blended seam by modifying the brightness of image pixels in the overlap or blend region. Equipment, systems, and techniques are disclosed for preserving the resolution and uniformity of the image across each seam by actively controlling the position of each display using a servo controlled lens mount for the positioning of each projected image in conjunction with a real time image analysis system.