Abstract:
An assembly for testing a head gimbal assembly (HGA) comprises a support platform configured to hold a base plate of the HGA. A base plate of the HGA is mounted on the support platform. The assembly further comprises a channel with an opening adjacent to a tail of the HGA and a vacuum source connected the channel. The vacuum source creates a negative pressure in the channel to secure the tail of the HGA to the opening of the channel. Embodiments of the invention may be useful to inhibit vibration in the tail of an HGA, which may also reduce vibration in the head of the HGA. Reducing vibration in the head of the HGA may increase the accuracy and precision of tests performed on the HGA using the assembly.
Abstract:
A method for dynamic electrical testing of head gimbal assemblies may include initiating an automated continuous process that includes selecting an unmounted head gimbal assembly; aligning the unmounted head gimbal assembly; loading the unmounted head gimbal assembly to a disc; and testing the unmounted head gimbal assembly.
Abstract:
A method for making an electrical connection between a head gimbal assembly and a tester. The method includes providing a solderless connector including a housing with bores extending from a first side of the housing to a second opposed side of the housing, and conductors within the bores of the housing. The conductors have a first end protruding from the first side of the housing and a second end protruding from the second side of the housing. The solderless connector is positioned so the first end of the conductor engages the conductive pad of the tester, and a clamp is applied to the first side of the electrical contact on the head gimbal assembly to urge the second side of the electrical contact against the second end of the conductor on the solderless connector.
Abstract:
An assembly for testing a head gimbal assembly (HGA) comprises a support platform configured to hold a base plate of the HGA. A base plate of the HGA is mounted on the support platform. The assembly further comprises a channel with an opening adjacent to a tail of the HGA and a vacuum source connected the channel. The vacuum source creates a negative pressure in the channel to secure the tail of the HGA to the opening of the channel. Embodiments of the invention may be useful to inhibit vibration in the tail of an HGA, which may also reduce vibration in the head of the HGA. Reducing vibration in the head of the HGA may increase the accuracy and precision of tests performed on the HGA using the assembly.
Abstract:
A method for dynamic electrical testing of head gimbal assemblies may include initiating an automated continuous process that includes selecting an unmounted head gimbal assembly; aligning the unmounted head gimbal assembly; loading the unmounted head gimbal assembly to a disc; and testing the unmounted head gimbal assembly.