摘要:
A MIMO antenna for improving isolation is disclosed. The disclosed antenna includes a dielectric feature; a ground plane included in a first layer of the dielectric feature; a first radiator, which is electromagnetically joined with a first feed point, configured to radiate a first RF signal, and joined with the ground plane; a second radiator, which is electromagnetically joined with a second feed point, configured to radiate a second RF signal, and joined with the ground plane; and a connector line, which is joined with a particular point of the first radiator and with a particular point of the second radiator to connect the first radiator with the second radiator. The disclosed antenna can improve isolation properties between multiple antennas and can ensure adequate isolation properties even when the distances between multiple antennas are set to be relatively small.
摘要:
A MIMO antenna for improving isolation is disclosed. The disclosed antenna includes a dielectric feature; a ground plane included in a first layer of the dielectric feature; a first radiator, which is electromagnetically joined with a first feed point, configured to radiate a first RF signal, and joined with the ground plane; a second radiator, which is electromagnetically joined with a second feed point, configured to radiate a second RF signal, and joined with the ground plane; and a connector line, which is joined with a particular point of the first radiator and with a particular point of the second radiator to connect the first radiator with the second radiator. The disclosed antenna can improve isolation properties between multiple antennas and can ensure adequate isolation properties even when the distances between multiple antennas are set to be relatively small.
摘要:
Disclosed are a cloned pig expressing green fluorescent protein (GFP) and a cloned pig having a 1,3-galactosyltransferase (GT) gene knocked out. Also, the present invention discloses methods of producing such cloned pigs, comprising the steps of establishing a somatic cell line; preparing a GFP-transfected or GT gene knock-out nuclear donor cell; producing a transgenic nuclear transfer embryo using the nuclear donor cell and a recipient oocyte; and transplanting the transgenic nuclear transfer embryo into a surrogate mother pig. The cloned pig expressing GFP of the present invention is useful for large-scale production of an animal disease model, and the GT gene knock-out cloned pig can be used as a organ donor allowing xenotransplantation in humans without hyperacute immune rejection.