摘要:
Laser crystallization equipment includes a laser generator generating a laser beam, the laser beam being directed toward a processing target substrate, and a blade member over the processing target substrate, the blade member being configured to chop the laser beam with a predetermined width in two directions, wherein two ends of the laser beam chopped by the blade member are irradiated to the processing target substrate as diffraction light.
摘要:
The described technology relates generally to an OLED display and manufacturing method thereof. The OLED display includes a substrate, a thin film transistor on the substrate and including a semiconductor layer, a gate electrode, a source electrode, and a drain electrode, and an organic light emitting element coupled to the thin film transistor and including a pixel electrode, an organic emission layer, and a common electrode, wherein the semiconductor layer is formed of a polycrystalline silicon layer, and remnants and contaminants at a surface of the polycrystalline silicon layer are reduced or eliminated through an atmospheric pressure plasma treatment. The semiconductor layer is formed of a polycrystalline silicon layer where remnants and contaminants at the surface thereof are reduced or eliminated through an atmospheric pressure plasma treatment.
摘要:
An organic light emitting display apparatus comprises an active layer, a gate electrode, a pixel electrode, source and drain electrodes, an intermediate layer, and an opposite electrode. The gate electrode includes: a first insulating layer; first, second and third conductive layers; a fourth conductive layer protecting the third conductive layer; and a fifth conductive layer. The pixel electrode includes a first electrode layer formed on the first insulating layer, a second and a third electrode layer, a fourth electrode layer protecting the third electrode layer, and a fifth electrode layer. A second insulating layer is disposed between the source and drain electrodes. The intermediate layer is disposed between the opposite electrode and the pixel electrode, and prevents damage to the pixel electrode during the manufacturing process.
摘要:
The described technology relates generally to an OLED display and manufacturing method thereof. The OLED display includes a substrate, a thin film transistor on the substrate and including a semiconductor layer, a gate electrode, a source electrode, and a drain electrode, and an organic light emitting element coupled to the thin film transistor and including a pixel electrode, an organic emission layer, and a common electrode, wherein the semiconductor layer is formed of a polycrystalline silicon layer, and remnants and contaminants at a surface of the polycrystalline silicon layer are reduced or eliminated through an atmospheric pressure plasma treatment. The semiconductor layer is formed of a polycrystalline silicon layer where remnants and contaminants at the surface thereof are reduced or eliminated through an atmospheric pressure plasma treatment.
摘要:
Laser crystallization equipment includes a laser generator generating a laser beam, the laser beam being directed toward a processing target substrate, and a blade member over the processing target substrate, the blade member being configured to chop the laser beam with a predetermined width in two directions, wherein two ends of the laser beam chopped by the blade member are irradiated to the processing target substrate as diffraction light.
摘要:
An organic light emitting display apparatus comprises an active layer, a gate electrode, a pixel electrode, source and drain electrodes, an intermediate layer, and an opposite electrode. The gate electrode includes: a first insulating layer; first, second and third conductive layers; a fourth conductive layer protecting the third conductive layer; and a fifth conductive layer. The pixel electrode includes a first electrode layer formed on the first insulating layer, a second and a third electrode layer, a fourth electrode layer protecting the third electrode layer, and a fifth electrode layer. A second insulating layer is disposed between the source and drain electrodes. The intermediate layer is disposed between the opposite electrode and the pixel electrode, and prevents damage to the pixel electrode during the manufacturing process.