摘要:
Superantibodies having enhanced autophilic, catalytic, and/or membrane-penetrating properties are prepared by affinity-based conjugation of a photoactivatable organic molecule to a target immunoglobulin. The photoactivatable organic molecule bears a chromophoric aromatic hydrocarbon moiety, which has affinity for the immunoglobulin. Upon photolysis, the organic molecule is covalently linked to the immunoglobulin. A preferred organic molecule is a peptide and a preferred aromatic hydrocarbon moiety is a tryptophan residue. The photoactivatable organic molecule need not bear a purine, pyrimidine or azido group to effect binding to the immunoglobulin and/or photoactivation. Autophilic superantibodies can promote apoptosis of target cells and/or enhance therapeutic efficacies in the treatment of patients with diseases or disorders responsive to antibody therapy. Exemplary of such diseases are atherosclerosis and cardiovascular disease. Membrane-penetrating superantibodies can prevent apoptosis by binding to intracellular anti-caspase signal proteins. Compositions containing the superantibodies, as well as methods of making and using them, are disclosed.
摘要:
Antibodies having noncovalent, autophilic properties are disclosed. The autophilic antibodies are derived from antibodies conjugated with an autophilic peptide. Such autophilic antibodies can promote apoptosis of target cells and enhance therapeutic efficacies in the treatment of patients with diseases or disorders responsive to antibody therapy. Compositions containing the antibodies, and methods of making and using the antibodies are also disclosed.
摘要:
Antibodies having noncovalent, autophilic properties are disclosed. The autophilic antibodies are derived from antibodies conjugated with an autophilic peptide. Such autophilic antibodies can promote apoptosis of target cells and enhance therapeutic efficacies in the treatment of patients with diseases or disorders responsive to antibody therapy. Compositions containing the antibodies, and methods of making and using the antibodies are also disclosed.
摘要:
The present invention provides an anti-idiotypic antibody having specific reactivity with an idiotope common to more than one type of anti-HIV-1 antibody, and having no specific reactivity with non-HIV-1 antibodies. The present invention provides methods of diagnosis, monitoring and treatment of HIV-related diseases through the use of this antibody or related compounds.
摘要:
The present invention provides an anti-idiotypic antibody having specific reactivity with an idiotope common to more than one type of anti-HIV-1 antibody, and having no specific reactivity with non-HIV-1 antibodies. The present invention provides methods of diagnosis, monitoring and treatment of HIV-related diseases through the use of this antibody or related compounds.
摘要:
The amino acid sequences of variable heavy and variable light domains of murine monoclonal antibody 1F7 are reported. Methods of use for products containing these sequences in the diagnosis and the treatment of HIV infection and AIDS are also described.
摘要:
Antibodies having noncovalent, autophilic properties are disclosed. The autophilic antibodies are derived from antibodies conjugated with an autophilic peptide. Such autophilic antibodies can promote apoptosis of target cells and enhance therapeutic efficacies in the treatment of patients with diseases or disorders responsive to antibody therapy. Compositions containing the antibodies, and methods of making and using the antibodies are also disclosed.
摘要:
Cell suicide (apoptosis) is associated with pathogenesis, for example, it is the major cause for the loss of neurons in Alzheimer's disease. Caspase-3 is critically involved in the pathway of apoptosis. Superantibody (SAT)-trans-membrane technology has been used to produce antibodies against the caspase enzyme in an effort to inhibit apoptosis in living cells. The advantage of using trans-membrane antibodies as apoptosis inhibitors is their specific target recognition in the cell and their lower toxicity compared to conventional apoptosis inhibitors. It is shown that a MTS-transport-peptide modified monoclonal anti-caspase-3 antibody reduces actinomycin D-induced apoptosis and cleavage of spectrin in living cells. These results indicate that antibodies conjugated to a membrane transporter peptide have a therapeutic potential to inhibit apoptosis in a variety of diseases.
摘要:
Superantibodies having enhanced autophilic, catalytic, and/or membrane-penetrating properties are prepared by affinity-based conjugation of a photoactivatable organic molecule to a target immunoglobulin. The photoactivatable organic molecule bears a chromophoric aromatic hydrocarbon moiety, which has affinity for the immunoglobulin. Upon photolysis, the organic molecule is covalently linked to the immunoglobulin. A preferred organic molecule is a peptide and a preferred aromatic hydrocarbon moiety is a tryptophan residue. The photoactivatable organic molecule need not bear a purine, pyrimidine or azido group to effect binding to the immunoglobulin and/or photoactivation. The superantibodies can enhance the potency and expand the targeting range of target antibodies. Autophilic superantibodies can promote apoptosis of target cells and/or enhance therapeutic efficacies in the treatment of patients with diseases or disorders responsive to antibody therapy. Exemplary of such diseases are atherosclerosis and cardiovascular disease. Membrane-penetrating superantibodies can prevent apoptosis by binding to intracellular anti-caspase signal proteins. Compositions containing the superantibodies, as well as methods of making and using them, are disclosed.
摘要:
Antibodies having noncovalent, autophilic properties are disclosed. The autophilic antibodies are derived from antibodies conjugated with an autophilic peptide. Such autophilic antibodies can promote apoptosis of target cells and enhance therapeutic efficacies in the treatment of patients with diseases or disorders responsive to antibody therapy. Compositions containing the antibodies, and methods of making and using the antibodies are also disclosed.