Abstract:
A solid-state image pickup device 1 includes a light receiving section 10, a first row selecting section 20, a second row selecting section 30, a first readout section 40, a second readout section 50, and a control section 60. Data of pixel units of rows in the light receiving section 10 selected by the first row selecting section 20 are output by the first readout section 40 to obtain image pickup data, and further, data of the pixel units of rows in the light receiving section 10 selected by the second row selecting section 30 are output by the second readout section 50 to obtain communication data.
Abstract:
A sealing member includes a sealing portion that is used for a cap attached to a reagent container and covers an opening of the cap with an open-close movement by flapping around a predetermined point. The sealing portion has, on an outer circumference in the predetermined point side, an extending portion that extends outward of the opening. The extending portion contacts with an upper edge of the opening when the sealing portion covers the opening.
Abstract:
A target substance can be efficiently produced by culturing, in a medium, a coryneform bacterium in which the activity of a PTS protein relating to fructose uptake is reduced or lost as compared with a parent strain and the bacterium can produce the target substance, allowing the target substance to form and accumulate in a culture; and collecting the target substance from the culture
Abstract:
A drop in the access performance to a source volume is prevented by executing various control methods according to the snapshot usage method. A storage apparatus comprises one or more storage devices which provide storage areas; and a controller which creates a logical volume in the storage area provided by the one or more storage devices, and which reads and writes data from/to the logical volume according to a request from a host, wherein the controller acquires one or more snapshots which are data images at certain time points of the logical volume, wherein the controller determines whether the logical volume is subject to abrupt load fluctuations on the basis of performance information of the logical volume and the snapshots, and wherein, if the logical volume is subject to abrupt load fluctuations, the controller executes predetermined control processing according to usage cases of the snapshots.
Abstract:
Provided is a storage system, including: one or more disk drives storing data; a disk controller for controlling data access to the disk drive; a power supply controller for autonomously turning off a power source of the disk drive according to the data access status to the disk drive, and autonomously turning on the power source of the disk drive, which was turned off, after the lapse of a prescribed period from the time the power source was turned off irrespective of the data access status to the disk drive; and a media inspection unit for inspecting a failure in the disk drive in which the power source thereof was autonomously turned on irrespective of the data access status to the disk drive.
Abstract:
Provided is a method for manufacturing refined fats and oils, including: a treating fats and oils by bringing the fats and oils into contact with water vapor or inert gas; and subsequently performing thin-film evaporation of the fats and oils.
Abstract:
An energy-saving effect calculator which includes a unit for determining a standard value of each of a plurality of patterns created from a past operation mode, a past demand data, and past operation data of a boiler; and a comparing unit for creating patterns of an operation mode, demand data, and operation data at a present time, and comparing a value of the pattern with the standard value, wherein at least one of a reduction in energy cost and a reduction in CO2 is calculated based on a comparison result of the comparing unit.
Abstract:
A method of molding a synthetic silica glass molded body by accommodating a synthetic silica glass block in a mold provided with a pressing portion, and by pressing the block while heating, the method comprising: a step of washing the synthetic silica glass block so that a concentration of copper which is present on the surface of the synthetic silica glass block is 2 ng/cm2 or less, and so that a concentration of aluminium thereon is 10 ng/cm2 or less, before accommodating the synthetic silica glass block in the mold; a step of heating high purity carbon powders in which a content of copper is 40 wt.ppb or less and a content of aluminium is 100 wt.ppb or less at a temperature condition of 1200° C. to 1900° C.; a step of heating the mold at a temperature condition of 1700° C. to 1900° C.; a step of applying the high purity carbon powders after the heating step on the inner surface of the mold after the heating step, before accommodating the synthetic silica glass block in the mold; and a step of molding the synthetic silica glass block in a predetermined form by pressing the block by means of the pressing portion while heating so as to the temperature of the block can be within a hold temperature range of 1500° C. to 1700° C., after accommodating the washed synthetic silica glass block in the mold.
Abstract translation:一种通过将合成石英玻璃块容纳在具有按压部分的模具中并通过在加热时加压块来成型合成石英玻璃成型体的方法,所述方法包括:洗涤合成石英玻璃块,使得 存在于合成石英玻璃块的表面上的铜的浓度在将合成石英玻璃块容纳在模具中之前为2ng / cm 2以下,使其上的铝浓度为10ng / cm 2以下。 在1200℃至1900℃的温度条件下,加热铜含量为40重量ppm以下,铝含量为100重量ppm以下的高纯度碳粉末的工序。 在1700℃至1900℃的温度条件下加热模具的步骤。 在将合成石英玻璃块容纳在模具中之后,在加热步骤之后将高纯度碳粉末加热到模具的内表面之后的步骤; 以及通过在加热的同时通过按压部分压块而使预定形式的合成石英玻璃块成型的步骤,使得块的温度可以在1500℃至1700℃的保持温度范围内 在将洗涤的合成石英玻璃块容纳在模具中之后。
Abstract:
An apparatus and a method for separating a specified gas from a gas to be treated containing the specified gas comprising at least one ingredient, which comprises allowing the gas to be treated to flow through a column without the use of another gas for transferring the gas to be treated, while keeping the inside of the column packed with a packing material at a reduced pressure. The above apparatus and method can be suitably used for separating a specified gas having a high purity at a low cost.
Abstract:
A rear-projection type projecting device enlarging and projecting an image displayed by a display device onto a screen, including a projecting optical system including a first optical system having a positive power and a second optical system having a reflection surface with a positive power, and a plane mirror attached to the projecting device to form a substantially right angle with respect to the screen and to reflect light emerging from the projecting optical system to the screen, wherein an effective reflection area of the reflection surface with the positive power is located at a position farther from an optical axis of the first optical system when viewed from the plane mirror.