摘要:
In the scanning exposure method of the present invention, a mask and a substrate are moved in a synchronous manner, and first patterns and a second pattern are connectedly exposed on the substrate. At least a portion of the first patterns and at least a portion of the second pattern form a common pattern, and the common pattern and non-common patterns, which differ from the common pattern, are formed in mask as the first patterns and the second pattern. The first patterns and the second pattern are connected by means of the common pattern.
摘要:
Positions of a plurality of marks formed in a correction mask are measured as first positions. A plurality of marks in the correction mask are transferred onto a photosensitive substrate, and transferred positions of the plurality of marks are determined as second positions. Subsequently, amounts of deviation of the first positions from the second positions are determined as correction data. After that, positions of a plurality of marks formed in an exposure mask are measured as third positions by a method similar to that used for measurement of the first positions, and the third positions are corrected on the basis of the correction data.
摘要:
A method of measuring the orthogonality of a movement coordinate system of a stage unit having a stage which two-dimensionally moves along the movement coordinate system determined by first and second axes that cross each other, by mounting a measurement substrate having at least three measurement patterns on the stage, the at least three measurement patterns including at least two first patterns arranged on a line parallel to a third axis on an array coordinate system determined by the third and fourth axes crossing each other, and at least two second patterns arranged on a line parallel to the fourth axis; aligning the third axis with respect to the first axis of the movement coordinate system; obtaining a difference in an angle between the fourth axis of the array coordinate system and the second axis of the movement coordinate system as a first deviation by detecting the positions of the second patterns on the movement coordinate system in an aligned state; rotating the measurement substrate by 90 degrees from the aligned state and mounting the measurement substrate on the stage; aligning the fourth axis with respect to the first axis of the movement coordinate system; obtaining a difference in an angle between the third axis of the array coordinate system and the second axis of the movement coordinate system as a second deviation by detecting the positions of the first patterns on the movement coordinate system in the aligned state; and obtaining the orthogonality of the movement coordinate system on the basis of the first and second deviations.