摘要:
Systems and methods using a spectrometer system for real-time automatic evaluation of tissue injury are described. A method of assessing an injury to tissue comprises reflecting an electromagnetic signal from the tissue to produce a reflected electromagnetic signal; producing spectral data pertaining to the intensities of individual wavelengths of the reflected electromagnetic signal; analyzing the spectral data to obtain a set of results; and providing an indication of the nature of the injury to the tissue based upon the set of results.
摘要:
Systems and methods using a neural network based portable absorption spectrometer system for real-time automatic evaluation of tissue injury are described. An apparatus includes an electromagnetic signal generator; an optical fiber connected to the electromagnetic signal generator; a fiber optic probe connected to the optical fiber; a broad band spectrometer connected to the fiber optic probe; and a hybrid neural network connected to the broad band spectrometer. The hybrid neural network includes a principle component analyzer of broad band spectral data obtained from said broad band spectrometer.
摘要:
Apparatus for analyzing a spectral signature, including: a light source; a spatial light modulator connected to the light source, the spatial light modulator modulating light from the light source in accordance with spatial features of the spectral signature; an optic system upon which modulated light from the spatial light modulator is incident, the optic system filtering the modulated light; a hologram illuminated with filtered, modulated light from the optic system, the hologram outputting an optical identification of the spectral signature; and a detector upon which the optical identification is incident, the detector detecting the optical identification.
摘要:
A method and apparatus for imaging three dimensional objects is described which has a source of illumination that is projected through a color grating onto the object to be imaged. A camera captures an image from the object which reflects the pattern imposed by the grating, and a series of mathematical operations are then performed on the data from the captured image to deduce three dimensional information about the object. The grating includes a repetitive pattern of parallel colored bars disposed a predetermined distance from each other, and includes an opaque area intermediate each of the colored bars to enhance the accuracy of the image by reducing cross-talk between the color bars of the captured image. One exposure of the object can provide information sufficient to calculate the 3-D profile of the object, making the system especially useful for imaging moving or living objects.
摘要:
An apparatus for in-depth three dimensional tumor mapping including (A) a light source; (B) a multi-fiber bundle including at least one illumination fiber and at least two receiving fibers, the at least one illumination fiber being connected to the light source; (C) a spectrometer connected to the at least two receiving fibers; and (D) a hybrid neural network connected to the spectrometer, said hybrid neural network including a principle component analysis processor and a neural network classifier.
摘要:
A method of operating an image recognition system including providing a neural network including a plurality of input neurons, a plurality of output neurons and an interconnection weight matrix; providing a display including an indicator; initializing the indicator to an initialized state; obtaining an image of a structure; digitizing the image so as to obtain a plurality of input intensity cells and define an input object space; transforming the input object space to a feature vector including a set of n scale-, position- and rotation- invariant feature signals, where n is a positive integer not greater than the plurality of input neurons, by extracting the set of n scale-, position- and rotation-invariant feature signals from the input object space according to a set of relationships I.sub.k =.intg..sub..OMEGA. .intg.I(x,y)h[k,I(x,y)]dxdy, where I.sub.k is the set of n scale-, position- and rotation-invariant feature signals, k is a series of counting numbers from 1 to n inclusive, (x,y) are the coordinates of a given cell of the plurality of input intensity cells, I(x,y) is a function of an intensity of the given cell of the plurality of input intensity cells, .OMEGA. is an area of integration of input intensity cells, and h[k,I(x,y)] is a data dependent kernel transform from a set of orthogonal functions, of I(x,y) and k; transmitting the set of n scale-, position- and rotation- invariant feature signals to the plurality of input neurons; transforming the set of n scale-, position- and rotation- invariant feature signals at the plurality of input neurons to a set of structure recognition output signals at the plurality of output neurons according to a set of relationships defined at least in part by the interconnection weight matrix of the neural network; transforming the set of structure recognition output signals to a structure classification signal; and transmitting the structure classification signal to the display so as to perceptively alter the initialized state of the indicator and display the structure recognition signal for the structure.