Abstract:
This apparatus is applied to an engine equipped with a fuel supply system that supplies pressure-increased fuel to a fuel injection valve, and performs the fuel injection from the injection valve in one combustion cycle by a multiple injection process that includes a pre-injection and a main injection that are executed with an interval therebetween. The apparatus calculates a deviation between a required value (one-dot chain line) and an actual value (solid line) regarding the end timing of the pre-injection, based on the manner of fluctuation of the fuel pressure in the fuel injection that is detected by a pressure sensor. A target main injection timing and a target pre-interval are individually set on the basis of the state of operation of the engine. Based on the deviation, the target main injection timing and the target pre-interval, the apparatus sets control target values regarding the execution period of the pre-injection.
Abstract:
A cetane number estimation apparatus injects fuel from a fuel injection valve in a diesel engine based on a target fuel injection amount, calculates an indicator of output torque of the diesel engine produced through fuel injection, and estimates the cetane number of the fuel using the calculated indicator. The cetane number estimation apparatus includes a pressure sensor for detecting fuel pressure varied by variation in actual fuel pressure in the fuel injection valve at the time of the fuel injection. The cetane number estimation apparatus also has a pressure correcting section that is adapted to calculate actual operating characteristics of the fuel injection valve based on a variation waveform of the detected fuel pressure and corrects the target fuel injection amount based on the difference between the calculated actual operating characteristics and prescribed reference operating characteristics.
Abstract:
In order to estimate the cetane number of a fuel, fuel injection is executed by controlling the driving of a fuel injection valve by a prescribed amount. The amount of change in the rotation of a diesel engine generated in response to the fuel injection is detected, and the cetane number of the fuel is estimated on the basis of this amount of change in the rotation. The actual amount of fuel injected from the fuel injection valve is detected, and when the difference between the amount actually detected and the prescribed amount is equal to or greater than a threshold value, the execution of the fuel cetane number estimation process is restricted.
Abstract:
A fuel injection amount control apparatus for an internal combustion engine includes an ECU that commands a learning-purpose injection when a first learning condition regarding operation state and a second learning condition regarding load connection state are satisfied, and calculates an injection performance value that corresponds to the actual injection amount based on the amount of change in rotation speed, and further determines whether a delay of the learning process is permitted based on whether the learning process, despite occurrence of the delay, can be completed before the injector performance reaches a permissible limit value, and forces, when the delay is not permitted, the load connection state to be a specific connection state so as to satisfy the second learning condition. When it is determined that the delay of the learning process is permitted, the delay is permitted until the two learning conditions are satisfied.
Abstract:
An electronic control unit, in an idle operating state, detects a crankshaft rotation fluctuation in each cylinder using a crank angle sensor, and updates an individual correction value for a control value for each fuel injection valve as a first learned value such that a degree of deviation in the crankshaft rotation fluctuation among the cylinders reduces. The electronic control unit uses a fuel pressure sensor to detect a manner of a fuel pressure fluctuation with fuel injection by each fuel injection valve, and updates an individual correction value for a control value for each fuel injection valve as a second learned value based on a result of comparison between a detected temporal waveform and a basic temporal waveform. In an idle operating state, a learning rate of the second learned value is reduced until the first learned value converges for the first time as compared with after its convergence.
Abstract:
An electronic control unit, in an idle operating state, detects a crankshaft rotation fluctuation in each cylinder using a crank angle sensor, and updates an individual correction value for a control value for each fuel injection valve as a first learned value such that a degree of deviation in the crankshaft rotation fluctuation among the cylinders reduces. The electronic control unit uses a fuel pressure sensor to detect a manner of a fuel pressure fluctuation with fuel injection by each fuel injection valve, and updates an individual correction value for a control value for each fuel injection valve as a second learned value based on a result of comparison between a detected temporal waveform and a basic temporal waveform. In an idle operating state, a learning rate of the second learned value is reduced until the first learned value converges for the first time as compared with after its convergence.
Abstract:
This apparatus is applied to an engine equipped with a fuel supply system that supplies pressure-increased fuel to a fuel injection valve, and performs the fuel injection from the injection valve in one combustion cycle by a multiple injection process that includes a pre-injection and a main injection that are executed with an interval therebetween. The apparatus calculates a deviation between a required value (one-dot chain line) and an actual value (solid line) regarding the end timing of the pre-injection, based on the manner of fluctuation of the fuel pressure in the fuel injection that is detected by a pressure sensor. A target main injection timing and a target pre-interval are individually set on the basis of the state of operation of the engine. Based on the deviation, the target main injection timing and the target pre-interval, the apparatus sets control target values regarding the execution period of the pre-injection.
Abstract:
A fuel injection amount control apparatus for an internal combustion engine includes an ECU that commands a learning-purpose injection when a first learning condition regarding operation state and a second learning condition regarding load connection state are satisfied, and calculates an injection performance value that corresponds to the actual injection amount based on the amount of change in rotation speed, and further determines whether a delay of the learning process is permitted based on whether the learning process, despite occurrence of the delay, can be completed before the injector performance reaches a permissible limit value, and forces, when the delay is not permitted, the load connection state to be a specific connection state so as to satisfy the second learning condition. When it is determined that the delay of the learning process is permitted, the delay is permitted until the two learning conditions are satisfied.
Abstract:
A log information issuing device includes a priority information manager in which priority information is stored, a priority of a log message being defined in the priority information, a message queue that has a plurality of queues for storing the log message according to the priority, a message sorting processor that refers to the priority information to store the log message in the message queue, an internal resource information collector that determines a load state of an internal resource from operating information on the internal resource, a log message queue processor that takes out the log message from the message queue, the log obtaining condition defining a condition of the log message is taken out from the message queue according to the load state, and a log processor supplies the log message as the log information, the log message being taken out by the log message queue processor.
Abstract:
A connection-basis identification information storing unit receives connection-basis identification information for identifying a packet for which information on the packet is to be collected, and stores received connection-basis identification information. A connection-basis packet information collecting unit acquires the information receives stores if a packet that is identified by the stored connection-basis identification information is received, and stores acquired information in a predetermined storage unit on the basis of the connection identified by a combination of a transmission source address and a transmission destination address included in the packet.