Abstract:
The invention provides an organic electroluminescence device having an input function, including: an element substrate that has a light-emitting layer sandwiched between a pair of electrodes; a sealing substrate that seals the element substrate; a first detection electrode that is provided at the inner-surface side of the sealing substrate; a second detection electrode that is provided at the outer-surface side of the sealing substrate; the second detection electrode having a detection axis that is not the same as that of the first detection electrode; a dielectric film that is formed on the second detection electrode; and a detection unit that detects a position at which electrostatic capacitance is generated via the dielectric film between the first detection electrode and the second detection electrode.
Abstract:
An input-capable display device includes a first substrate a second substrate, a detection electrode, a dielectric film, and a detector. A pair of electrodes that drive a liquid crystal layer are provided on the first substrate. The second substrate is opposed to the first substrate through the liquid crystal layer. The detection electrode and the dielectric film are laminated on an outer surface of the second substrate. The detector detects a position at which an electrostatic capacitance is formed with the detection electrode through the dielectric film. The second substrate includes a shield conductor that is provided on a side adjacent to the liquid crystal layer. An electric potential of the shield conductor is fixed. The shield conductor has a plurality of birefringent structures that are arranged in a stripe.
Abstract:
A color filter substrate 8 having a plurality of pixels D1 includes a reflecting layer 4 composed of a metal film formed on a substrate 2, and any one of blue, green, and red color filter layers 10, 12, and 14 formed on the reflecting layer 4 at a position corresponding to each pixel D1. A metal complex of phthalocyanine is applied to the surface of the reflecting layer 4 at the interface with each color filter layer.
Abstract:
The present invention provides a MIM type non-linear element in which the capacitance is sufficiently small and in which little changes over time are exhibited in the current-voltage characteristics, a liquid crystal display panel with high image quality using the MIM type non-linear element, and a method of manufacturing the MIM type non-linear element. The MIM type non-linear element includes a first conductive film, an insulation film and a second conductive film, which are laminated on a substrate. The insulation film has a relative dielectric constant of 25.5 or less, preferably 24.0-25.5. In elementary analysis by SIMS, a hydrogen spectrum of the boundary region between the first conductive film and the insulation film has a width of 10 nm or more in the depth direction at an intensity of one tenth of the peak intensity. The first conductive film of the MIM type non-linear element shows a peak temperature of 300° C. or higher in a thermal desorption spectroscopy of hydrogen. The MIM type non-linear element is manufactured by, for example, a method containing the steps of (a) forming the first conductive film, (b) heat-treating the first conductive film at a temperature of 300° C. or higher in an inert gas, (c) forming the insulation film on the surface of the first conductive film by anodization of the first conductive film, and (d) forming the second conductive film on the surface of the insulation film.
Abstract:
An MIM nonlinear device having a large nonlinearity coefficient that represents the sharpness of the voltage-current characteristic, a liquid crystal display panel with high image-quality that uses this device, and a manufacturing method of said MIM nonlinear device are provided. The MIM nonlinear device contains a first conductive film 22, an insulating film 24, and a second conductive film 26 laminated on a substrate 30. The insulating film 24 may contain water, and in the insulating film, in a thermal desorption spectrum, a peak derived from water in the insulating film is 225-300° C. Further, in said thermal desorption spectrum, the number of molecules calculated from the area of the peak derived from the water is preferably 5×1014/cm2 or more.
Abstract translation:提供了具有表示电压 - 电流特性的清晰度的非线性系数大的MIM非线性器件,使用该器件的具有高图像质量的液晶显示面板以及所述MIM非线性器件的制造方法。 MIM非线性器件包含层叠在基板30上的第一导电膜22,绝缘膜24和第二导电膜26.绝缘膜24可以含有水,并且在绝热膜中,在热解吸光谱中,峰 绝缘膜中的水衍生自225-300℃。此外,在所述热解吸附光谱中,从源自水的峰的面积计算出的分子数优选为5×10 14 / cm 2以上。
Abstract:
The invention provides an organic electroluminescence device having an input function, including: an element substrate that has a light-emitting layer sandwiched between a positive electrode and negative electrode in each of a plurality of sub pixel regions that are arrayed in a matrix pattern; a sealing substrate that seals the element substrate; and a touch panel section that is provided at the outer-surface side of the sealing substrate. In such a configuration of the organic electroluminescence device having an input function according to an aspect of the invention, the negative electrode is formed on an individual basis so as to correspond to the display color of each of the sub pixel regions; and the sealing substrate has a shield conductor that is formed on the element-substrate side of the sealing substrate, the shield conductor having a fixed potential.
Abstract:
The invention provides an organic electroluminescence device having an input function, including: an element substrate that has a light-emitting layer sandwiched between a pair of electrodes; a sealing substrate that seals the element substrate; a first detection electrode that is provided at the inner-surface side of the sealing substrate; a second detection electrode that is provided at the outer-surface side of the sealing substrate; the second detection electrode having a detection axis that is not the same as that of the first detection electrode; a dielectric film that is formed on the second detection electrode; and a detection unit that detects a position at which electrostatic capacitance is generated via the dielectric film between the first detection electrode and the second detection electrode.
Abstract:
A liquid crystal device 60A includes a main display 1A and a sub-display 2A. Signals are supplied from a drive circuit 7 to first electrodes 15a and second electrodes 15b included in the main display 1A and third electrodes 15c and fourth electrodes 15d included in the sub-display 2A. Some of the first electrodes 15a of the main display 1A are electrically connected to the third electrodes 15c of the sub-display 2A.
Abstract:
Color layers R, G, and B of a color filter are arranged in a delta pattern. A data line (212) for applying a voltage to the sub-pixels is connected, through TFD (220), to pixel electrodes (234) of the sub-pixels respectively corresponding to the three colors in a fixed order in a periodic pattern, and pixel electrodes (234) commonly connected to a single data line (212) are arranged to the same side of the data line (212). The potential of the sub-pixels for a particular color are equally influenced by the potential of the sub-pixels of other colors.
Abstract:
The energizing patterns (12A) are composed of wiring pattern sections (12A-1) formed so as to be elongated along the region for forming the wiring layers (12), connection pattern sections (12A-2) connecting the adjoining wiring patterns for each pixel region and striped joint pattern sections (12A-3) for connecting the wiring pattern sections (12A-1) outside of the prospective liquid crystal display region in which pixel regions are arranged. Element constituting sections (12A-2a) including the portions to be formed into connection layers (13) are formed in the connection pattern sections (12A-2). The portions to be formed into the connection layers (13) are formed into a protruding peninsula shape in this element constituting sections (12A-2a). The present invention can prevent defective anodic oxidation due to cutting off or imperfect configuration of the energizing pattern (12A), as well as reducing the process damage of the active element.