Abstract:
A gas discharge illumination device is prepared by encapsulating ionizable gas within microporous or nanoscale sealed cavities created within a matrix material. Upon exposure of said matrix material to an electric field, the ionizable gas becomes ionized and emits light. By incorporating several different ionizable gases into one matrix material, a display with different colors of light can be produced. The gas discharge illumination device can be fabricated by a variety of techniques including selective cavity formation with overcoating taking place in an ionizable gas ambient, and bubbling ionizable gas through the matrix material while it is in viscous form. The gas discharge illumination device can be used to form either active or passive displays, as a sensor for detecting electric fields, and in other applications.
Abstract:
A polishing pad and method of polishing with a chemical mechanical planarization apparatus includes providing a bulk polishing pad material having a front polishing surface side and a back side. The polishing pad further includes a polishing pad wear indicator for indicating a polishing pad wear during a life cycle of the polishing pad. The polishing pad wear indicator is formed on the back side of the bulk polishing pad material.
Abstract:
A method for forming reactive metal silicide layers at two spaced locations on a silicon substrate, which layers can be of different thicknesses and/or of different reactive metals is provided. A sililcon substrate has a silicon dioxide layer formed thereon followed by the formation of a polysilicon layer on the silicon dioxide layer, followed by forming a layer of refractory metal, e.g. titanium on the polysilicon. A non-reflecting material, e.g. titanium nitride is formed on the refractory metal. Conventional photoresist techniques are used to pattern the titanium nitride, the titanium and polysilicon, and the titanium is reacted with the contacted polysilicon to form a titanium silicide. The portion of silicon dioxide overlying the silicon substrate is then removed and the exposed substrate is ion implanted to form source/drain regions. A second layer of refractory metal, either titanium or some other refractory metal, is deposited over the source/drain region, and either over the titanium nitride, or over the first formed silicide by first removing the titanium nitride. The second layer of refractory metal is reacted with the substrate at the source/drain region to form a refractory metal silicide, after which the unreacted refractory metal is removed.
Abstract:
A method for dry etching metals that form low volatility chlordes, in which Z-Cl reaction products are controllably introduced into a conventional Cl-based plasma independent of the workpiece. The Z-Cl products (e.g., AlCl.sub.3, GaCl.sub.3, etc.) are metal chlorides that have both electron acceptor and chloride donor properties. Thus, metals M (e.g., cobalt, copper and nickel) that usually produce low volatility chlorides can be controllably complexed to form high volatility Z.sub.x Cl.sub.y M.sub.z reaction products.
Abstract translation:用于干蚀刻形成低挥发性氯的金属的方法,其中Z-Cl反应产物可以独立于工件被可控地引入到常规的基于Cl的等离子体中。 Z-Cl产物(例如,AlCl 3,GaCl 3等)是具有电子受体和氯化物给体性质的金属氯化物。 因此,通常产生低挥发性氯化物的金属M(例如钴,铜和镍)可以可控地复合以形成高挥发性Z x ClyMz反应产物。
Abstract:
A method for anisotropically etching a thick tungsten layer atop a thin underlayer comprised of titanium nitride, by exposure to a gaseous plasma comprised of a binary mixture of chlorine gas and oxygen, wherein oxygen comprises approximately 25%-45% of the mixture by volume. This plasma provides a combination of high tungsten etch rate, highly uniform etching, anisotropic profiles, and high etch rate ratio to underlaying glass passivation layers.