Abstract:
Disclosed is a method for measuring luminance of each of entire pixels two-dimensionally arranged in a light-emitting display panel at regular intervals, using an image sensor in which light receiving elements are two-dimensionally arranged at regular intervals, the method including: providing an optical lens between the light-emitting display panel and the image sensor, and adjusting distances between the light-emitting display panel, the image sensor, and the optical lens by setting intervals of images of the entire pixels to be N times as large as intervals of the light receiving pixels, where N is a natural number, the images being to be formed on a light receiving surface of the image sensor through the optical lens; displaying, on the light-emitting display panel, a display pattern in which predetermined pixels from among the entire pixels produce a luminescence; and measuring the luminance of the predetermined pixels, using the light receiving elements.
Abstract:
The liquid crystal display device (1) of the present invention includes a liquid crystal display panel (3) and a backlight (2). In the backlight (2), a plurality of plasma tubes (22) are employed as light sources. The backlight (2) includes: a substrate (21) and; an array structure (23) in which the plurality of plasma tubes (22) are provided, in an array, on the substrate (21). A surface of the array structure (23) opposite to a surface facing the substrate (21) serves as a light emitting section (29) that irradiates the liquid crystal display panel (3). Since the backlight includes plasma tubes serving as the light sources, it is possible to achieve a thinner liquid crystal display device that carries out a high-definition image display in spite of its thin thickness.
Abstract:
A lighting element (1) containing a dielectric layer (5) of a metal oxide with a front surface and a back surface, where the dielectric layer (5) contains an arrangement of elongated pores (8) extending between front and back surfaces through the dielectric layer (5) and the pores (8) are open to the front surface, and a base electrode (7) made from an electrically conductive material is arranged on the back surface, and in the pores (8) are arranged emitter rods (4) of an electrically conductive material, and a translucent layer of counter-electrode (2) of an electrically conductive material is arranged over the front surface of the dielectric layer (5), and a layer of luminescent material (3) is arranged between the dielectric layer (5) and the base electrode (7). The layer of counter-electrode (2) is a part of the layer system of the lighting element (1), where the dielectric layer (5) has the function of a spacer and separates the base electrode (7) from the counter-electrode (2).
Abstract:
A plasma panel used as a light source of a display panel includes a first substrate having a first surface, a second substrate positioned above the first substrate, a plurality of electrode pairs extending along a first direction on the first surface, and a plurality of conductive spacers. Each of the electrode pairs includes a first electrode and a second electrode. The conductive spacers are formed on the first electrode and the second electrode for performing a discharge of opposed electrodes and supporting the second substrate.
Abstract:
A full color fiber plasma display device includes two glass plates sandwiched around a top fiber array and a bottom fiber array. The top and bottom fiber arrays are substantially orthogonal and define a structure of the display, with the top fiber array disposed on a side facing towards a viewer. The top fiber array includes identical top fibers, each top fiber including two sustain electrodes located near a surface of the top fiber on a side facing away from the viewer. A thin dielectric layer separates the sustain electrodes from the plasma channel formed by a bottom fiber array. The bottom fiber array includes three alternating bottom fibers, each bottom fiber including a pair of barrier ribs that define the plasma channel, an address electrode located near a surface of the plasma channel, and a phosphor layer coating on the surface of the plasma channel, wherein a luminescent color of the phosphor coating in each of the three alternating bottom fibers represents a subpixel color of the plasma display. Each subpixel is formed by a crossing of one top fiber and one corresponding bottom fiber. The plasma display is hermetically sealed with a glass frit. The sustain and address electrodes are brought out through the glass frit for direct connection to a drive control system.
Abstract:
Disclosed is an AC type plasma display panel for back light of liquid crystal display device. The disclosed comprises a rear substrate and a front substrate arranged opposite to each other with a predetermined distance; seal paste for sealing the edges of the substrates; a pair of discharge electrodes interposed between the rear substrate and the front substrate, having a plurality of holes and separated with a predetermined distance in a state of no contact with the substrates; and a plurality of spacers interposed between the rear substrate and discharge electrodes and between the front substrate and discharge electrodes in order to maintain distances.
Abstract:
A flat panel display, such as a head mounted display, and a process for its manufacture are disclosed. Essentially, the flat panel display comprises separately manufactured flat panels including a display material and driver chips that are bump-bonded to the flat panels preferably by using flip chip technology. The flat panel display is particularly applicable to miniature display applications and is characterized by being rugged yet reliable, in color but with good luminescence across the spectrum of the primary colors of red, blue and green. Pixels preferably are addressed by passive matrix activation. Preferably, the display material of the flat panels is a thin film electroluminescent material, a passive matrix liquid crystal material, a plasma display material or a field emission display material.
Abstract:
An AC memory driving type self-shift type gas discharge panel prevents accidental abnormal discharges caused by deviated abnormal charges. Abnormal charges are significantly accumulated at both ends of a shift channel consisting of a regular arrangement of a write discharge cell and shift discharge cells. Therefore, conductive layers are provided adjacent to at least both ends of the shift channel in order to dissipate the abormal charges.
Abstract:
Apparatus for providing a visual information screen by means of a plurality of gas cells serially arranged along gas channels within a glass panel, having orthogonal parallel conductors in dielectric separation over the channels, wherein a single electrical input circuit is utilized to ignite a gas cell which may be serially shifted to selected gas channels and subsequently parallel shifted with other similar gas cells along the channels by electrical excitation of the conductors.
Abstract:
A gas discharge panel provides one or more shift channels for discharge spots, said shift channel (s) being composed of 2 or more electrode groups on each of a pair of substrates arranged oppositely across a discharge gap. Electrodes of each group are provided alternately and periodically on each substrate with the electrode patterns on each substrate such as to define said shift channel(s). The electrode layout eliminates the need for crossover areas in the leading out of electrodes and is very useful for realizing high resolution and low cost AC driven self-shift plasma display panels.