Abstract:
In various embodiments, single-crystal aluminum nitride boules and substrates have low Urbach energies and/or absorption coefficients at deep-ultraviolet wavelengths. The single-crystal aluminum nitride may function as a platform for the fabrication of light-emitting devices such as light-emitting diodes and lasers.
Abstract:
Structural health monitoring using nuclear quadrupole resonance is disclosed. For example, in one embodiment, a method of monitoring stress is provided. The method includes scanning a composite using an NQR spectrometer, the composite having a polymer matrix and a microcrystalline material disposed in the matrix. The microcrystalline material includes molecules having nuclei with respective nuclear quadrupole moments. The method also includes determining microscopic strain distribution indices of the composite from the NQR scans to quantify stress and identify precursors to failure in the composite.
Abstract:
A rotor blade assembly having an access window and methods for assembling a rotor blade are disclosed. The rotor blade assembly may generally include a first shell component and a second shell component. The first shell component may be secured to the second shell component. Additionally, an access region may be defined in the first shell component and/or the second shell component. The access region may generally be configured such that an access window is defined in the rotor blade assembly. The access window may be configured to provide access to the interior of a portion of the rotor blade assembly.
Abstract:
In various embodiments, single-crystal aluminum nitride boules and substrates have low Urbach energies and/or absorption coefficients at deep-ultraviolet wavelengths. The single-crystal aluminum nitride may function as a platform for the fabrication of light-emitting devices such as light-emitting diodes and lasers.
Abstract:
A non-planar article includes a plasma deposited abrasion resistant coating with a substantially uniform thickness and a substantially uniform abrasion resistance with delta haze (%) in the range between about +/−0.25 of the mean value.
Abstract:
A non-planar article includes a plasma deposited abrasion resistant coating with a substantially uniform thickness and a substantially uniform abrasion resistance with delta haze (%) in the range between about +/−0.25 of the mean value.
Abstract:
Disclosed are flame retardant resinous compositions comprising (i) at least one aromatic polycarbonate; (ii) at least one of a second polymer having structural units derived from one or more monomers selected from the group consisting of vinyl aromatic monomers, monoethylenically unsaturated nitrile monomers, and C1-C12 alkyl (meth)acrylate monomers; (iii) at least one rubber modified graft copolymer; (iv) at least one polymeric or non-polymeric organic phosphorus species; (v) at least one antidrip agent; and (vi) at least one perfluoroalkanesulfonate salt present in an amount in a range between about 0.01 wt % and about 0.25 wt %, based on the weight of the entire composition. Also disclosed are methods for making said compositions.
Abstract:
In various embodiments, single-crystal aluminum nitride boules and substrates are formed from the vapor phase with controlled levels of impurities such as carbon. Single-crystal aluminum nitride may be heat treated via quasi-isothermal annealing and controlled cooling to improve its ultraviolet absorption coefficient and/or Urbach energy.
Abstract:
In various embodiments, single-crystal aluminum nitride boules and substrates are formed from the vapor phase with controlled levels of impurities such as carbon. Single-crystal aluminum nitride may be heat treated via quasi-isothermal annealing and controlled cooling to improve its ultraviolet absorption coefficient and/or Urbach energy.
Abstract:
In various embodiments, single-crystal aluminum nitride boules and substrates have low Urbach energies and/or absorption coefficients at deep-ultraviolet wavelengths. The single-crystal aluminum nitride may function as a platform for the fabrication of light-emitting devices such as light-emitting diodes and lasers.