Abstract:
An accurate and low cost macro pressure sensor is described. The pressure sensor includes an array of capacitive sensing elements formed at the intersections of sets of conductors. A lower set of conductors is supported by a substrate and an upper set of conductors is supported on a flexible polymer membrane. Capacitive sensing elements are formed where a conductor in the upper set overlaps a spacer in the lower set. Separators hold the membrane away from the substrate with a separation that, because of deflection of the membrane, varies in relation to the pressure applied to the membrane. As a result, the separation of conductors, and therefore capacitance, in each cell varies in response to the applied pressure. By attaching the membrane to the separators and optionally using slits in the membrane between capacitive sensing elements, measurements made in each capacitive sensing element can be mechanically decoupled.
Abstract:
A system and method for obtaining a quantitative measurement of the location and size of a contrast material within a bodily organ, such as the GI tract of a person. A contrast material is introduced into the organ and a plurality of images is obtained. A curve representing the bodily organ is formed based on the images. Local image fields are defined along the curve and a field intensity is found for each by integrating the intensity of the image in the field. An intensity profile along the length of the curve is thus obtained for each image and provides a quantitative representation of contrast material along the bodily organ. The profiles are displayed in any suitable way. In some embodiments, identification of the curve may be aided by introduction of targets are into the organ. The target locations can be identified in each image. In some embodiments, an image obtained without the contrast material is subtracted from each of the plurality of images to cancel the background radiopacity and isolate the contrast material in each profile.
Abstract:
A system for visually indicating, in real time or post hoc, values of a physical property detected over a period of time along a dimension of an organism to a user on a temporal plot and a profile plot, either individually or concurrently. The detected values may be visually indicated on the temporal plot using any of a variety of techniques, including, but not limited to, a contour technique, a line trace technique or a mesh plot technique. Further, the detected values may be visually indicated on the profile plot using any of a variety of techniques, including, but not limited to a contour technique, a line trace technique or a histogram technique. To provide a finer spatial resolution, values may be interpolated for locations between the locations at which values were detected, and these values may be displayed on the temporal plot and the profile plot.
Abstract:
A diagnostic system for display of physiological data in a format useful for identifying or diagnosing physiological conditions. The system registers visual representations of different types of physiological data to aid in an understanding of bodily processes. In addition to registering the data, the system may display different types of physiological data with different visual characteristics. Further, the transparency of the visual representations of the different datasets may be controlled to enhance the understandability of displayed information. The system, for example, can be used with data representative of pressure and impedance within a patient's gastrointestinal tract to provide greater understanding of physiological processes during a swallow.
Abstract:
A system for visually indicating, in real time or post hoc, values of a physical property detected over a period of time along a dimension of an organism to a user on a temporal plot and a profile plot, either individually or concurrently. The detected values may be visually indicated on the temporal plot using any of a variety of techniques, including, but not limited to, a contour technique, a line trace technique or a mesh plot technique. Further, the detected values may be visually indicated on the profile plot using any of a variety of techniques, including, but not limited to a contour technique, a line trace technique or a histogram technique. To provide a finer spatial resolution, values may be interpolated for locations between the locations at which values were detected, and these values may be displayed on the temporal plot and the profile plot.
Abstract:
A system for visually indicating, in real time or post hoc, values of a physical property detected over a period of time along a dimension of an organism to a user on a temporal plot and a profile plot, either individually or concurrently. The detected values may be visually indicated on the temporal plot using any of a variety of techniques, including, but not limited to, a contour technique, a line trace technique or a mesh plot technique. Further, the detected values may be visually indicated on the profile plot using any of a variety of techniques, including, but not limited to a contour technique, a line trace technique or a histogram technique. To provide a finer spatial resolution, values may be interpolated for locations between the locations at which values were detected, and these values may be displayed on the temporal plot and the profile plot.
Abstract:
A physiological sensor-transmitter assembly for measuring a physiological property at an internal body location of a subject over time is described. An instrument for inserting the assembly in the subject and a method of monitoring a physiological property measured at the internal body location over time are also described. The assembly includes a sensor and a transmitter adapted to transmit information from the sensor in a non-wired fashion to a receiver. The assembly also includes an anchor adapted to attach to an externally accessible portion of a subject and a tether that connects the sensor and the anchor to maintain a position of the sensor within the gastrointestinal tract of the subject.
Abstract:
A convenient serving-size pan (10) with flange (13), and flanged lid (11) removably attached by a hinge (14), enabling a wide range of pourable, particulate, and solid foods to be cooked in quantity in forced-air convection ovens. The pan and lid are fabricated of highly heat conductive materials with interior surfaces suitable for direct food contact. Exterior surfaces of the pans are smooth and plain to minimize insulative film coefficients and maximize heat transfer. A vertical stacking system provides effective use of oven space while maintaining sufficient space between pans for effective heat transfer.
Abstract:
A method of attitude measurement for an artificial satellite (100) utilizes one or more star trackers (12) together with an earth sensor (30). Periodic updates of satellite orbital information, either propagated onboard or from a ground station are combined with earth and star position coordinate data to provide a continuous and accurate measurement of the spacecraft body 3-axis attitude. The method can be used for ground-based attitude determination or onboard closed loop control systems.
Abstract:
A diagnostic system for display of physiological data in a format useful for identifying or diagnosing physiological conditions. The system registers visual representations of different types of physiological data to aid in an understanding of bodily processes. In addition to registering the data, the system may display different types of physiological data with different visual characteristics. Further, the transparency of the visual representations of the different datasets may be controlled to enhance the understandability of displayed information. The system, for example, can be used with data representative of pressure and impedance within a patient's gastrointestinal tract to provide greater understanding of physiological processes during a swallow.