Abstract:
A separation process for separating two or more immiscible liquids using contactors utilizing high surface area vertical hanging fibers is disclosed. This separation process is especially useful in the separation of disulfide oil formed during the oxidation of spent caustic solution that was used to remove sulfur contaminates from light hydrocarbons.
Abstract:
A separation process for separating two or more immiscible liquids using fiber-film technology is disclosed. This separation process is especially useful in the separation of disulfide oil formed during the oxidation of spent caustic solution that was used to remove sulfur contaminates from light hydrocarbons.
Abstract:
A process for removing color bodies from hydrocarbon-based fuels, particularly gasoline, using an activated carbon is disclosed. Color bodies are removed from the fuel by contacting the fuel with such activated carbon having within this pore structure a fuel decolorizing amount of polymerized phosphoric acid or reduced transition metals. Phosphoric acid may be added to a non-phosphoric acid-activated carbon (such as steam activated coal-based) prior to the subsequent heat treatment or one can take advantage of residual phosphoric acid present in, for example, a phosphoric acid-activated wood-based carbon. Similarly, transition metals such as copper may be added to an activated carbon in a salt form in addition to whatever is already present therein as impurities.
Abstract:
Provided is a pharmaceutical composition useful for prevention and/or treatment of diseases caused by bacteria, wherein the pharmaceutical composition comprising a honeysuckle extract containing iridoid compounds and an antibiotic. Also provided is a pharmaceutical kit comprising the honeysuckle extract containing the iridoid compounds and the antibiotics which are separately placed. The honeysuckle extract is used in combination with the antibiotics, the responsiveness of multi-drug resistant bacteria to antibiotics is improved, a clinical application prospect is presented, especially the current status of the refractory bacterial infection diseases caused by the pathogenic bacteria resistant to the antibiotics can be improved. Also provided is a use of the pharmaceutical composition and pharmaceutical kit in the preparation of drugs for prevention and/or treatment a diseases caused by bacteria. In addition, also provided is a use of the honeysuckle extract in the preparation of drugs for reversing bacterial resistance.
Abstract:
In a catalytic treatment process, mercaptans in sour hydrocarbon are oxidized to disulfide oils using an aqueous treatment solution containing a chelated polyvalent metal catalyst, alkali metal hydroxide, and the alkali metal salt of at least one alcohol in a non-dispersive mixing apparatus wherein an upgraded hydrocarbon containing the disulfide oils is produced.
Abstract:
In a catalytic treatment process, mercaptans in sour hydrocarbon are oxidized to disulfide oils using an aqueous treatment solution containing a chelated polyvalent metal catalyst, alkali metal hydroxide, and the alkali metal salt of at least one alcohol in a non-dispersive mixing apparatus wherein an upgraded hydrocarbon containing the disulfide oils is produced.
Abstract:
A process for the removal of residual sulfur compounds from a liquid caustic stream is disclosed. One embodiment of my invention adsorbs disulfides from a caustic stream using an activated carbon adsorbent while another combines both oxidation and adsorption in single step to remove residual sulfur compounds from a rich caustic stream using metal phthalocyanine supported on a solid adsorbent. This process is especially useful as a polishing step in a caustic regeneration process flow scheme.
Abstract:
An activated carbon, disclosed as useful in purification and decolorization of hydrocarbon fuel, particularly gasoline, is characterized by inclusion therein of polymerized phosphoric acid or reduced transition metals. Phosphoric acid may be added to a non-phosphoric acid-activated carbon (such as steam activated coal-based) prior to the subsequent heat treatment or one can take advantage of residual phosphoric acid present in, for example, a phosphoric acid-activated wood-based carbon. Similarly, transition metals such as copper may be added to an activated carbon in a salt form in addition to whatever is already present therein as impurities. The conversion of phosphoric acid to a polymerized phosphate content or reduction of transition metals to a reduced form results from the activated carbon having been treated with inert gas or carbon dioxide at from about 1200° F. to about 1800° F. for at least 5 minutes. Alternatively, the conversion of phosphoric acid to a polymerized phosphate content can occur during phosphoric acid activation of carbon at activation temperatures in the range of 1150°-1600° F.