Abstract:
A nozzle positioning assembly includes a first support shaft, a second support shaft, a first position adjustment assembly, a second position adjustment assembly, and a hub. The first and second support shafts have respective bodies with a center aperture, a spherical first end, and a second end opposite the spherical first end. The first and second position adjustment assembly include first and second link mounting ears positioned circumferentially from one another. The first position adjustment assembly is adapted to be affixed to the second end of the first support shaft and the second position adjustment assembly is adapted to be affixed to the second end of the second support shaft. The hub has a first end configured to receive and rotatably retain the spherical first end of the first support shaft, and a second end configured to receive and rotatably retain the spherical first end of the second support shaft.
Abstract:
A nozzle positioning assembly includes a first support shaft, a second support shaft, a first position adjustment assembly, a second position adjustment assembly, and a hub. The first and second support shafts have respective bodies with a center aperture, a spherical first end, and a second end opposite the spherical first end. The first and second position adjustment assembly include first and second link mounting ears positioned circumferentially from one another. The first position adjustment assembly is adapted to be affixed to the second end of the first support shaft and the second position adjustment assembly is adapted to be affixed to the second end of the second support shaft. The hub has a first end configured to receive and rotatably retain the spherical first end of the first support shaft, and a second end configured to receive and rotatably retain the spherical first end of the second support shaft.
Abstract:
An improved sputtering process increases the perpendicularity of the sputtered flux to the target surface by bombarding the target with both low and high mass ions, with low mass ions predominating, packing the target with both low and high mass implanted ions, and causing target atoms ejected as a result of high mass incident ions to have a higher probability of perpendicular or near perpendicular ejection. An alternative improved sputtering process bombards the target with both low and high mass ions, with high mass ions predominating, resulting in a higher sputter rate than achievable with either the high or low mass species alone. Including in either process as the high or the low mass species a species having a lower ionization energy than a standard species allows a reduced pressure plasma, resulting in less scattering of the sputtered flux. A low ionization energy species may also be employed to assist in striking a plasma before sputtering by a single species during deposition.
Abstract:
A sensor system for measuring blood perfusion, blood temperature, and thermal resistance using heat transfer and temperature measurements. The system uses a heat flux sensor, temperature sensor and electric resistance heater with a data analysis device using measurements before, during and after the thermal event provided by the heater.
Abstract:
An improved sputtering process increases the perpendicularity of the sputtered flux to the target surface by bombarding the target with both low and high mass ions, with low mass ions predominating, packing the target with both low and high mass implanted ions, and causing target atoms ejected as a result of high mass incident ions to have a higher probability of perpendicular or near perpendicular ejection. An alternative improved sputtering process bombards the target with both low and high mass ions, with high mass ions predominating, resulting in a higher sputter rate than achievable with either the high or low mass species alone. Including in either process as the high or the low mass species a species having a lower ionization energy than a standard species allows a reduced pressure plasma, resulting in less scattering of the sputtered flux. A low ionization energy species may also be employed to assist in striking a plasma before sputtering by a single species during deposition.
Abstract:
An improved sputtering process increases the perpendicularity of the sputtered flux to the target surface by bombarding the target with both low and high mass ions, with low mass ions predominating, packing the target with both low and high mass implanted ions, and causing target atoms ejected as a result of high mass incident ions to have a higher probability of perpendicular or near perpendicular ejection. An alternative improved sputtering process bombards the target with both low and high mass ions, with high mass ions predominating, resulting in a higher sputter rate than achievable with either the high or low mass species alone. Including in either process as the high or the low mass species a species having a lower ionization energy than a standard species allows a reduced pressure plasma, resulting in less scattering of the sputtered flux. A low ionization energy species may also be employed to assist in striking a plasma before sputtering by a single species during deposition.