Abstract:
A system for generating a differential gloss image useful for digital printing includes a digital front end configured for receiving variable image data; and an imaging device including a laser glossing imager, the imaging device being configured to receive raster image data from the digital front end, the raster image data being based on the received variable image data, and the imaging device being configured to generate a differential gloss image over a printed image based on the received variable image data.
Abstract:
An imaging apparatus including multiple spatial light modulators, each including light modulating elements arranged in two-dimensional array disposed in a homogenous light field, multiple anamorphic optical systems, each disposed downstream from an associated spatial light modulator, a scan structure, and an image stitching controller. The light modulating elements of each spatial light modulator are individually adjustable to either pass received homogenous light portions to the anamorphic optical systems, or to block/redirect the homogenous light portions, thereby generating a two-dimensional modulated light field. Each anamorphic optical system images and focuses received modulated light field onto an associated substantially one-dimensional scan line portion on the scan structure. The image stitching controller modifies the image data sent to each spatial light modulator such that selected light modulating elements are enabled or disabled, thereby electronically stitching the scan line portions to form a seamlessly stitched scan line image.
Abstract:
A variable lithographic inking system includes a chamber blade system configured to supply ink to an anilox member of an inking system. The inking system includes a soft ink transfer roll and a hard form roll. Ink is transferred from the anilox roll to the form roll by way of the transfer roll, and from the form roll to a reimageable surface layer of an imaging member of a variable data lithographic system. An ink layer free of ink history is uniformly applied onto a surface of the form roll, and subsequently transferred to the reimageable surface layer while avoiding or substantially eliminating image ghosting related to inking non-uniformities.
Abstract:
An imaging method for generating a substantially one-dimensional scan line image using multiple spatial light modulators, to modulate a homogenous light field, and then anamorphically imaging and concentrating the modulated light to form the scan line image. The spatial light modulators include light modulating elements that are arranged in two-dimensional array and are individually adjustable to either pass/reflect received homogenous light portions to the anamorphic optical systems, or to block/redirect the homogenous light portions, thereby generating two-dimensional modulated light fields. Anamorphic optical systems are used to image and focus received modulated light field onto an associated substantially one-dimensional scan line portion on the scan structure. An image stitching controller modifies the image data sent to each spatial light modulator such that selected light modulating elements are enabled or disabled, thereby electronically stitching the scan line portions to form a seamlessly stitched scan line image.
Abstract:
A variable lithographic inking system includes a chamber blade system configured to supply ink to an anilox member of an inking system. The inking system includes a soft ink transfer roll and a hard form roll. Ink is transferred from the anilox roll to the form roll by way of the transfer roll, and from the form roll to a reimageable surface layer of an imaging member of a variable data lithographic system. An ink layer free of ink history is uniformly applied onto a surface of the form roll, and subsequently transferred to the reimageable surface layer while avoiding or substantially eliminating image ghosting related to inking non-uniformities.
Abstract:
Substantially one-dimensional scan line images at 1200 dpi or greater are generated in response to predetermined scan line image data. A substantially uniform two-dimensional homogenous light field is modulated using a spatial light modulator in accordance with the predetermined scan line image data such that the modulated light forms a two-dimensional modulated light field. The modulated light field is then anamorphically imaged and concentrated to form the substantially one-dimensional scan line image. The spatial light modulator includes light modulating elements arranged in a two-dimensional array. The light modulating elements are disposed such that each modulating element receives an associated homogenous light portion, and is individually adjustable between an “on” modulated state and an “off” modulated state, whereby in the “on” modulated state each modulating element directs its received light portion onto a corresponding region of the anamorphic optical system, and in the “off” state blocks or diverts the light portion.
Abstract:
An imaging (e.g., lithographic) apparatus for generating an elongated concentrated scan image on an imaging surface of a scan structure (e.g., a drum cylinder) that moves in a process (cross-scan) direction. The apparatus includes a spatial light modulator having a two-dimensional array of light modulating elements for modulating a two-dimensional light field in response to predetermined scan image data, and an anamorphic optical system is used to anamorphically image and concentrate the modulated light onto an elongated imaging region defined on the imaging surface. To avoid smearing, movement of the imaging surface is synchronized by an image position controller with the modulated states of the light modulating elements such that image features of the scan image are scrolled (moved in the cross-scan direction) at the same rate as the cross-scan movement of the imaging surface, whereby the features remain coincident with the same portion of the imaging surface.
Abstract:
Two substantially one-dimensional scan line images are simultaneously generated by modulating a two-dimensional homogenous light field using a spatial light modulator having light modulating elements arranged in a plurality of rows and a plurality of columns. An upper group of modulating elements are configured using a first scan line image data group, and a lower group of modulating elements are configured using a second scan line image data group. The homogenous light source is then pulsed (toggled) to direct the two-dimensional homogenous light field onto the spatial light modulator. The resulting two-dimensional modulated light field is directed through an anamorphic optical system, which images and concentrates the modulated light on an imaging surface such that two parallel one-dimensional scan line images are simultaneously formed on the imaging surface.
Abstract:
An imaging (e.g., lithographic) apparatus for generating an elongated concentrated scan image on an imaging surface of a scan structure (e.g., a drum cylinder) that moves in a process (cross-scan) direction. The apparatus includes a spatial light modulator having a two-dimensional array of light modulating elements for modulating a two-dimensional light field in response to predetermined scan image data, and an anamorphic optical system is used to anamorphically image and concentrate the modulated light onto an elongated imaging region defined on the imaging surface. To avoid smearing, movement of the imaging surface is synchronized by an image position controller with the modulated states of the light modulating elements such that image features of the scan image are scrolled (moved in the cross-scan direction) at the same rate as the cross-scan movement of the imaging surface, whereby the features remain coincident with the same portion of the imaging surface.
Abstract:
A method and system for enabling an image production device to generate differential gloss for a print includes exposing a toner image of a material to laser to cause one or more portions of the toner image to melt. The material includes the toner image and a substrate. The substrate is to remain substantially unaffected by the laser.