Abstract:
A large scale video display of the present invention is designed to receive a standard NTSC video signal and display it on a large scale array of low cost, voltage or current controlled lamp transducers. The video signals are received by a video capture device which receives and digitizes the video signal. A host processor formats the digital data into a number of 16 bit data words each corresponding to a pixel. A coprocessor receives the 16 bit data words and reformats the data. The reformatted data is connected to a large scale display by a fiber optic connection. The display includes a number of transceivers which receive the formatted video data in a memory buffer. The transceivers also receive a board map from the coprocessor. The map indicates which light boards correspond to each part of the memory where the frame image is stored. This information is used by a number of controllers to determine which lights to turn on and at what level of brightness for any given time.
Abstract:
A zero-heat-flux, deep tissue temperature measurement system measures internal body temperature by way of a probe having a heater and thermal sensors arranged in a zero-heat-flux construction. The measurement system includes control mechanization that determines heater and skin temperatures based upon data obtained from the probe and uses those temperatures to calculate a deep tissue temperature. The measurement system includes a signal interface cable having a connector where a probe can be releasably connected to the system. The cable and attached connector are a removable and replaceable part of the system, separate from the probe. The measurement system provides an output signal imitating a standard input signal configuration used by other equipment.
Abstract:
The present invention provides an indirect calorimeter for measuring the metabolic rate of a subject. The calorimeter includes a respiratory calorimeter configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes. A flow pathway is operable to receive and pass inhaled and exhaled gases. A first end of the flow pathway is in fluid communication with the respiratory connector and a second end is in fluid communication with a source and sink for respiratory gases. A flow meter generates electrical signals as a function of the instantaneous flow volume of inhaled and exhaled gases passing through the flow pathway. A component gas concentration sensor generates electrical signals as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases as the gases pass through the flow pathway. A computation unit receives the electrical signals from the flow meter and the component gas concentration sensor and calculates at least one respiratory parameter for the subject as the subject breathes through the calorimeter.
Abstract:
A method and apparatus for use with an electronic display system including a display surface wherein the system is capable of identifying a touch location on at least a portion of the display surface of a contact with the display surface, the display surface having a display area, the method for moving a cursor icon about at least a portion of the display area and comprising the steps of identifying first and second areas within the display area having first and second area surfaces, respectively, sensing a touch location on the first area surface and presenting a cursor icon on the second area surface as a function of the touch location on the first area surface.
Abstract:
An indirect calorimeter for measuring the metabolic rate of a subject includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes, a flow pathway, and a hygiene barrier positioned to block a predetermined pathogen from the exhaled gases. The indirect calorimeter also includes a flow pathway having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The flow pathway includes a flow tube through which the inhaled and exhaled gases pass, an outer housing surrounding the flow tube, and a chamber disposed between the flow tube and the first end. The indirect calorimeter also includes a flow meter configured to generate electrical signals as a function of the instantaneous flow volume of inhaled and exhaled gases passing through the flow pathway, and a component gas concentration sensor operable to generate electrical signals as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases as the gases pass through the flow pathway. The indirect calorimeter further includes a computation unit operable to receive the electrical signals from the flow meter and the concentration sensor and operative to calculate at least one respiratory parameter for the subject as the subject breathes through the calorimeter.
Abstract:
An improved breath analyzing apparatus for use in an automobile ignition locking system. A breath sample tube receives a breath sample from a user. The breath sample tube is divided into a high pressure section and a low pressure section by an air flow restrictor. A pressure sensor is connected to the high pressure section to determine when a user is blowing into the breath analyzing apparatus. A temperature sensor measures the temperature of the breath sample to insure that it is the same temperature as human breath. A micropump propels a specified volume of the breath sample into a fuel cell which is used to determine the alcohol content. Control means converts the output of the fuel cell into a reading which represents the breath alcohol content of the breath sample. Heating elements warm the fuel cell when the ambient temperature drops below a specified level. The output of the fuel cell is adjusted based on the time it takes the fuel cell to reach its maximum output. A housing holds all the major components of the breath analyzing apparatus and contains a tamper switch therein which detects when the case is opened. A display on the housing shows the alcohol content of the breath sample as well as displaying instructions and messages for the user. The breath analyzer apparatus is used as part of an overall automobile ignition locking system which prohibits starting the car when the operator is intoxicating. The system also requires rolling retests to insure that the driver is still sober.
Abstract:
A zero-heat-flux, deep tissue temperature measurement system measures internal body temperature by way of a probe having a heater and thermal sensors arranged in a zero-heat-flux construction. The measurement system includes control mechanization that determines heater and skin temperatures based upon data obtained from the probe and uses those temperatures to calculate a deep tissue temperature. The measurement system includes a signal interface cable having a connector where a probe can be releasably connected to the system. The cable and attached connector are a removable and replaceable part of the system, separate from the probe. The measurement system provides an output signal imitating a standard input signal configuration used by other equipment.
Abstract:
A method of determining a respiratory parameter for a subject using an indirect calorimeter is provided. The indirect calorimeter includes a respiratory connector for passing inhaled and exhaled gases, a flow pathway operable to receive and pass inhaled and exhaled gases having a flow tube within the flow pathway through which the inhaled and exhaled gases pass, a flow meter for determining an instantaneous flow volume of the inhaled and exhaled gases, a component gas concentration sensor for determining an instantaneous fraction of a predetermined component gas and a computation unit having a processor and a memory. The method includes the steps of initializing the indirect calorimeter and the subject breathing into the respiratory connector if the indirect calorimeter is initialized, sensing the flow volume of the inhaled and exhaled gases passing through the flow pathway using the flow meter and transmitting a signal representing the sensed flow volume to the computation unit. The method also includes the steps of sensing a concentration of a predetermined component gas as the inhaled and exhaled gases pass through the flow pathway using the component gas sensor, and transmitting a signal representing the sensed concentration of the predetermined component gas to the computation unit. The method further includes the steps of calculating at least one respiratory parameter for the subject as the subject breathes through the calorimeter using the sensed flow volume and the sensed concentration of the predetermined component gas, and providing the subject with the at least one respiratory parameter.
Abstract:
An indirect calorimeter for measuring the metabolic rate of a subject includes a disposable portion and a reusable portion. The disposable portion includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes. The disposable portion also includes a flow pathway operable to receive and pass inhaled and exhaled gases, having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The disposable portion is disposed within the reusable portion, which includes a flow meter, a component gas concentration sensor, and a computation unit. The flow meter generates a signal as a function of the instantaneous flow volume of respiratory gases passing through the flow pathway and the component gas concentration sensor generates a signal as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases. The computation unit receives the electrical signals from the flow meter and the concentration sensor and calculates at least one respiratory parameter for the subject as the subject breathes through the calorimeter.