Abstract:
A method for stabilizing a degas temperature of wafers in a degas chamber comprises (a) setting an electrical heater at an initial output power, (b) heating each wafer for a first period of time to keep the temperature of the wafer at a predetermined range by setting the electrical heater at a first output power equal to or higher than the initial output power, (c) heating the wafer for a second period of time to increase the temperature of the wafer to a predetermined value by raising the output power of the electrical heater to a second output power; and (d) heating the wafer for a third period of time by reducing the output power of the electrical heater to a third output power. The method lessens the “first wafer effect” and the “temperature-accumulated effect”. Therefore, the temperature of the wafers can be well controlled before a subsequent sputtering process.
Abstract:
A susceptor device in a masked sputtering chamber is disclosed. The device of the present invention comprises a susceptor, a lifter and at least one heater. The susceptor, having at least one trench, is coupled with the lifter having at least one rod. The heater is disposed in the trench and coupled with the rod through the access hole at the bottom of the trench. After the sputtering process for forming indium tin oxide (ITO) film is completed, a baking process is applied to the mask in the chamber for converting the amorphous ITO film formed on the mask to polycrystalline ITO film, thereby increasing the life of the mask.
Abstract:
A method of improving the magnetic field uniformity of a magnetron sputtering equipment is disclosed. The method includes providing an equipment having a magnetic field generating device and a magnetic field receiving surface; utilizing the equipment multiple times to acquire the magnetic field intensity distribution on the magnetic field receiving surface; preparing a compensation plate corresponding to the magnetic field intensity distribution, such that the area of the compensation plate corresponding to the area of the magnetic field receiving surface with stronger magnetic field has a stronger ferromagnetic property and the area corresponding to the area of the magnetic field receiving surface with weaker magnetic field has a weaker ferromagnetic property; and installing the compensation plate between the magnetic field generating device and the magnetic field receiving surface for improving the magnetic field uniformity of the magnetic field receiving surface.
Abstract:
A magnetic control oscillation-scanning sputter includes a sputtering target, a base and an elongated magnet. The sputtering target has a surface with a target located thereon corresponding to the base. The target being sputtered is deposited on the base. The elongated magnet is located on the rear side of the sputtering target and moved reciprocately to control the deposition of the target. The elongated magnet has two ends each which is coupled with a magnetic erasing means for reducing excessive magnetic field intensity at the two ends to avoid affecting the sputter quality.
Abstract:
A magnetic control oscillation-scanning sputter includes a sputtering target, a base and an elongated magnet. The sputtering target has a surface with a target located thereon corresponding to the base. The target being sputtered is deposited on the base. The elongated magnet is located on the rear side of the sputtering target and moved reciprocately to control the deposition of the target. The elongated magnet has two ends each which is coupled with a magnetic erasing means for reducing excessive magnetic field intensity at the two ends to avoid affecting the sputter quality.
Abstract:
A method for improving a performance of a sputtering target in a magnetron sputtering system having at least one magnet repetitively and retracingly scanning between two sides thereof and receiving a power input changing with a scanning position of the magnet is provided. The method includes the steps of stepwise reducing the power input while the magnet approaches a specific distance range near a retracing point, so as to reduce an erosion rate of the sputtering target by the magnetron sputtering system, and increasing the power input to a specific value while the magnet leaves the specific distance range, wherein the power input changes with the scanning position of the magnet, so as to improve the performance of the sputtering target.