Abstract:
The present invention relates to a process for forming cobalt nanoparticles and coating them with copper or copper oxide, in which process a copper salt is mixed to a cobalt salt so that the formed salt mixture obtains a cobalt:copper ratio of >1:1, and a reduction is carried out with a reducing gas, whereby nanoparticles are formed while a coating is formed onto their surface.
Abstract:
The present invention relates to a process for forming cobalt nanoparticles and coating them with copper or copper oxide, in which process a copper salt is mixed to a cobalt salt so that the formed salt mixture obtains a cobalt:copper ratio of >1:1, and a reduction is carried out with a reducing gas, whereby nanoparticles are formed while a coating is formed onto their surface.
Abstract:
The invention relates to a method for the carbon coating of metallic nanoparticles. The metallic nanoparticles, which are produced using the metal-salt hydrogen-reduction method, can be coated with carbon by adding a hydrocarbon (for example, ethylene, ethane, or acetylene) to the hydrogen using in the synthesis. The carbon layer protects the metallic particles from oxidation, which greatly facilitates the handling and further processing of the particles. By altering the concentration of the hydrocarbon, it is possible, in addition, to influence the size of the metallic particles created, because the coating takes place simultaneously with the creation of the particles, thus stopping the growth process. A carbon coating at most two graphene layers thick behaves like a semiconductor. As a thicker layer, the coating is a conductor. If the hydrocarbon concentration is further increased, a metal-CNT composite material is formed in the process. The composite materials developed are in themselves suitable as the raw materials of, for example, metallic inks and sensor materials.
Abstract:
The invention relates to a method for the carbon coating of metallic nanoparticles. The metallic nanoparticles, which are produced using the metal-salt hydrogen-reduction method, can be coated with carbon by adding a hydrocarbon (for example, ethylene, ethane, or acetylene) to the hydrogen using in the synthesis. The carbon layer protects the metallic particles from oxidation, which greatly facilitates the handling and further processing of the particles. By altering the concentration of the hydrocarbon, it is possible, in addition, to influence the size of the metallic particles created, because the coating takes place simultaneously with the creation of the particles, thus stopping the growth process. A carbon coating at most two graphene layers thick behaves like a semiconductor. As a thicker layer, the coating is a conductor. If the hydrocarbon concentration is further increased, a metal-CNT composite material is formed in the process. The composite materials developed are in themselves suitable as the raw materials of, for example, metallic inks and sensor materials.
Abstract:
By means of the invention, nanoparticles, which can be pure metal, alloys of two or more metals, a mixture of agglomerates, or particles possessing a shell structure, are manufactured in a gas phase. Due to the low temperature of the gas exiting from the apparatus, metallic nanoparticles can also be mixed with temperature-sensitive materials, such as polymers. The method is economical and is suitable for industrial-scale production. A first embodiment of the invention is the manufacture of metallic nanoparticles for ink used in printed electronics.