Abstract:
A transceiver system is disclosed that includes a plurality of transceiver chips. Each transceiver chip includes one or more SERDES cores. Each SERDES core includes one or more SERDES lanes. Each SERDES lane includes a receive channel and a transmit channel. The transmit channel of each SERDES lane is phase-locked with a corresponding receive channel. The transceiver system has the capability of phase-locking a transmit clock signal phase of a transmitting component with a receive clock signal phase of a receiving component that is a part of a different SERDES lane, a different SERDES core, a different substrate, or even a different board. Each SERDES core receives and transmits data to and from external components connected to the SERDES core, such as hard disk drives. A method of transferring data from a first external component coupled to a receive channel to a second external component coupled to a transmit channel is also disclosed.
Abstract:
A transceiver system is disclosed that includes a plurality of transceiver chips. Each transceiver chip includes one or more SERDES cores. Each SERDES core includes one or more SERDES lanes. Each SERDES lane includes a receive channel and a transmit channel. The transmit channel of each SERDES lane is phase-locked with a corresponding receive channel. The transceiver system has the capability of phase-locking a transmit clock signal phase of a transmitting component with a receive clock signal phase of a receiving component that is a part of a different SERDES lane, a different SERDES core, a different substrate, or even a different board. Each SERDES core receives and transmits data to and from external components connected to the SERDES core, such as hard disk drives. A method of transferring data from a first external component coupled to a receive channel to a second external component coupled to a transmit channel is also disclosed.
Abstract:
Embodiments include a system for performing dispersion compensation on an electromagnetic signal received over a communication channel, the electromagnetic signal bearing information at a symbol rate. An interleaved analog to digital converter (“ADC”) block may be used, wherein the interleaved ADC block may be configured to generate a plurality of digitally sampled signals from the electromagnetic signal. An interleaved equalizer block may be configured to digitally process each of the digitally sampled signals generated by the ADC block to generate a plurality of digitally equalized signals. A multiplexer may be configured to aggregate the digitally equalized signals into a composite output signal.
Abstract:
A method is presented that monitors the quality of a communications channel. The method includes receiving a data signal and establishing a zero reference phase of the received data signal. The method further includes generating a phase-shifted data signal by phase shifting the received data signal relative to the zero reference phase, and sampling the phase-shifted data signal for one or more phase-shift positions. A zero reference phase is reestablished between sampling at each of the phase-shift positions. The method also includes detecting bit errors in the phase-shifted data signal at each of the phase-shift positions in order to provide a communications channel quality measurement. In an embodiment, the method includes generating an eye diagram according to a count of detected bit errors relative to a count of detected bits. The eye diagram characterizes the quality of the communications channel.
Abstract:
An automatic polarity swap is implemented in a communications system. Two or more transceivers having differential inputs and outputs are coupled together through an interface, such as a backplane to form a communications system. In such a configuration, it is possible to cross-connect the differential data lines or signals at the interface, which will cause invalid data words to received at the second transceiver. Accordingly, the present invention includes an error check and correction module that detects invalid data words after parallel-to-serial conversion. More specifically, an error check determines if the parallel differential signal represents a valid data word. This can be done, for example, by storing and comparing valid data words in a memory such as RAM. If the received data word is valid, then no corrective action is taken. However, if the received data word is invalid, then the parallel differential signal is inverted using a logic circuit, which will correct the error if it is due to cross-connection of the differential lines at the interface or anywhere else.
Abstract:
Systems and methods that facilitate on-chip testing are provided. An integrated circuit can include a transmitter configured to transmit a communications signal via a communications channel. The integrated circuit can also include a receiver configured to receive the communications signal via the communications channel. A jitter creation module also can form part of the integrated circuit and can introduce jitter into the system thereby allowing for on-chip jitter testing. The jitter creation module can form either part of the transmitter or receiver and can introduce the jitter by phase interpolation.
Abstract:
In conventional Backplane Ethernet systems, data is transmitted over two pairs of copper traces in one direction using a PAM-2 scheme and a baud rate of 10.3125 GHz, giving an effective bit rate of 10.3125 Gbps. The rate at which data can be transmitted in Backplane Ethernet systems, while still being reliably received, is typically limited by ISI caused by the dispersive nature of the copper traces, frequency dependent transmission losses caused primarily by skin effect and dielectric loss of the copper traces, and cross-talk from adjacent communication lines. The present invention is directed to systems for overcoming these and other signal impairments to achieve speeds up to, and beyond, twice the conventional 10 Gbps limit associated with Backplane Ethernet systems.
Abstract:
In conventional Backplane Ethernet systems, data is transmitted over two pairs of copper traces in one direction using a PAM-2 scheme and a baud rate of 10.3125 GHz, giving an effective bit rate of 10.3125 Gbps. The rate at which data can be transmitted in Backplane Ethernet systems, while still being reliably received, is typically limited by ISI caused by the dispersive nature of the copper traces, frequency dependent transmission losses caused primarily by skin effect and dielectric loss of the copper traces, and cross-talk from adjacent communication lines. The present invention is directed to systems for overcoming these and other signal impairments to achieve speeds up to, and beyond, twice the conventional 10 Gbps limit associated with Backplane Ethernet systems.
Abstract:
A transceiver system is disclosed that includes a plurality of transceiver chips. Each transceiver chip includes one or more SERDES cores. Each SERDES core includes one or more SERDES lanes. Each SERDES lane includes a receive channel and a transmit channel. The transmit channel of each SERDES lane is phase-locked with a corresponding receive channel. The transceiver system has the capability of phase-locking a transmit clock signal phase of a transmitting component with a receive clock signal phase of a receiving component that is a part of a different SERDES lane, a different SERDES core, a different substrate, or even a different board. Each SERDES core receives and transmits data to and from external components connected to the SERDES core, such as hard disk drives. A method of transferring data from a first external component coupled to a receive channel to a second external component coupled to a transmit channel is also disclosed.
Abstract:
Embodiments include a system for performing electronic dispersion compensation on an information-bearing signal transmitted over a communication channel. The system may include a channel identification module configured to receive a first digitized version of the information bearing signal and an equalized version of the information-bearing signal, and may be configured to determine an impulse response of the communication channel based thereon. The system may include a time varying phase detector configured to receive the equalized version of the information bearing signal, a second digitized version of the information-bearing signal, and the impulse response, and may be further configured to generate a reference wave based on the impulse response and the equalized version of the information-bearing signal. The time varying phase detector may be configured to generate a phase signal based on the reference wave and on an error signal determined from the reference wave and the second digitized version of the information-bearing signal.